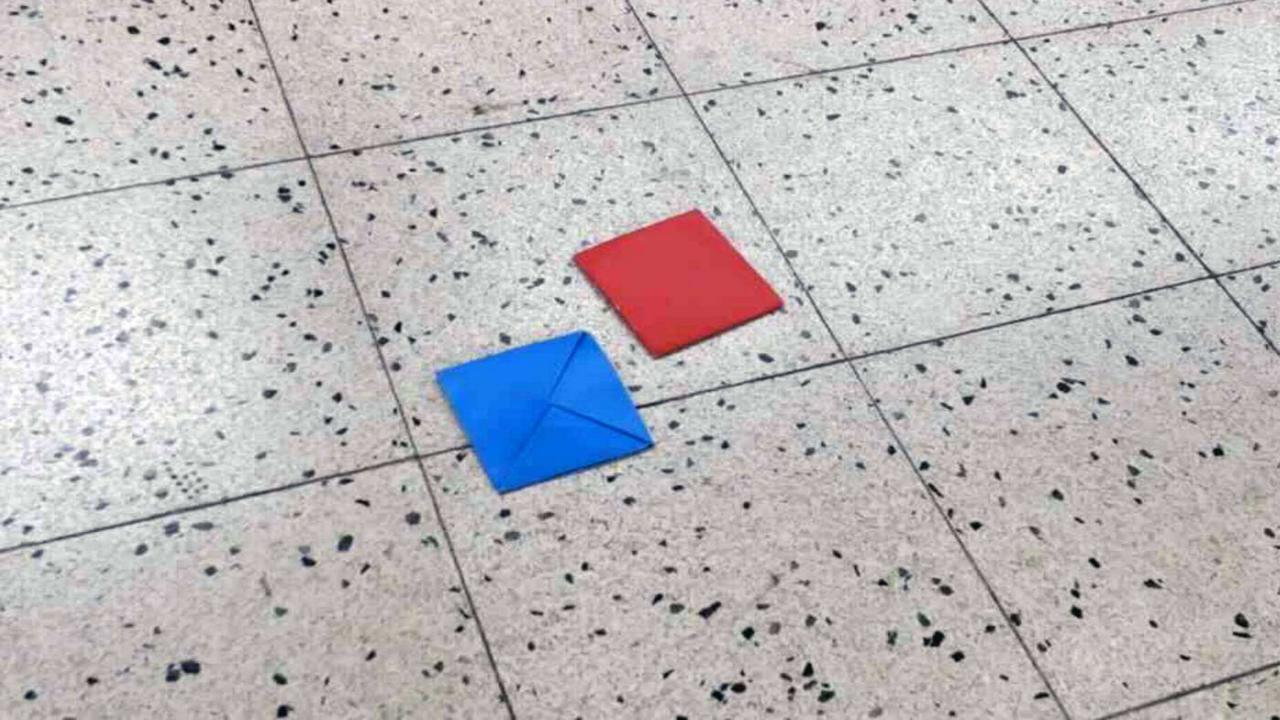
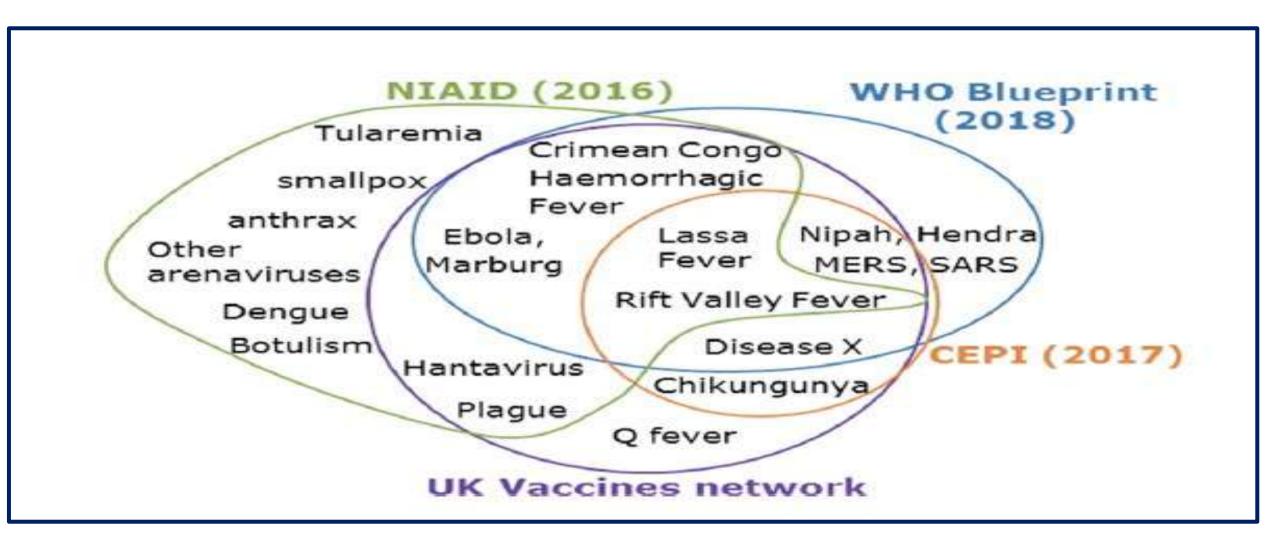


COVID19 BAĞLAMINDA AŞI GELİŞTİRME TEKNOLOJİLERİ VEKTÖR AŞILARI

Prof.Dr. Ener Çağrı Dinleyici Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Çocuk Sağlığı ve Hastalıkları Anabilim Dalı

19 Şubat 2022 Ulusal Erişkin Bağışıklama Sempozyumu




@timbooth75

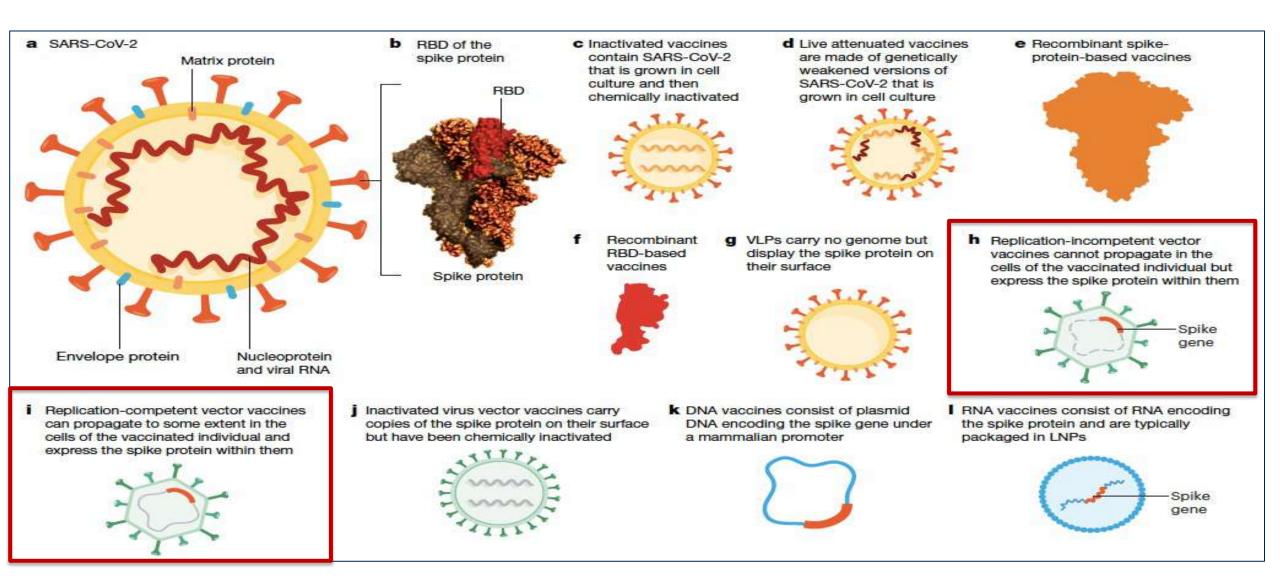
@ecdinleyici

SALGIN AŞILAMASI

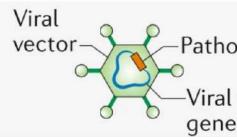
SALGIN AŞILAMASINDA ADENOVİRÜS VEKTÖRLERİ

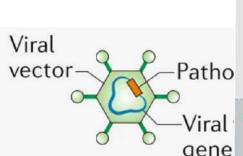
Table 5. Status of chimpanzee adenovirus vector (ChAd) vaccine development for a range of outbreak pathogens at the Jenner Institute, University of Oxford (as May 2017). The genetic background for all vectors is ChAdOx1 (a species E modified chimpanzee adenovirus based on isolate Y25).²³ Antigens are inserted at the E1 locus via Gateway[®] recombination. For preclinical immunogenicity testing, mice typically receive a single-dose of 10⁸ infectious units (intramuscular).

Pathogen	ChAd construct made	Immunogenicity demonstrated in mice	Neutralising antibody activity demonstrated	Animal efficacy demonstrated	GMP production funded	Phase I/II evaluation commenced
Pandemic Influenza virus	✓	✓	✓	√	√	✓
Rift Valley Fever virus	✓	✓	✓	✓	✓	
MERS CoV	V	✓	✓	✓	✓	
Zika virus	V	√		✓	√	
Chikungunya virus	✓	✓	✓		✓	
Crimean Congo Haemorrhagic Fever virus	V	✓				
Lassa virus	✓	✓				
Zaire ebolavirus	✓	✓				
Sudan ebolavirus	✓	✓				
Zaire + Sudan ebolavirus + Marburg	✓	✓				
Yersinia pestis	V	✓				
Nipah virus	/	✓				
SARS CoV	V	✓				

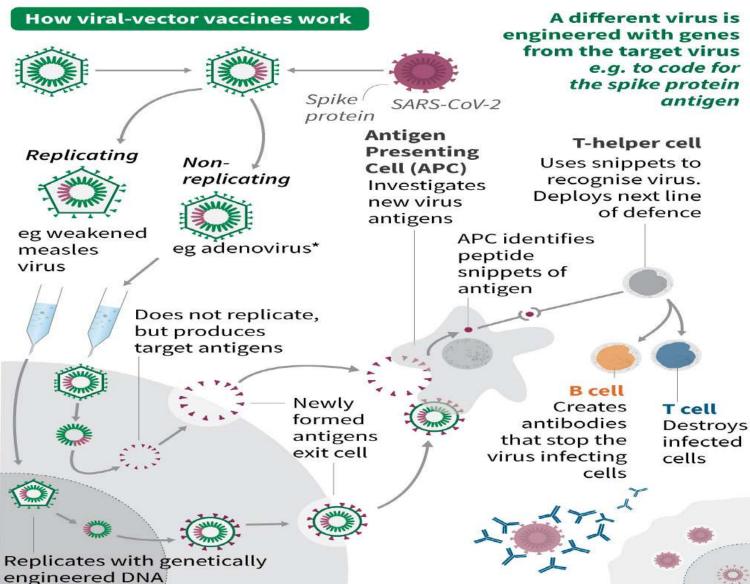


SALGIN AŞILAMASINDA ADENOVİRÜS VEKTÖRLERİ


COVID-19 AŞILARI

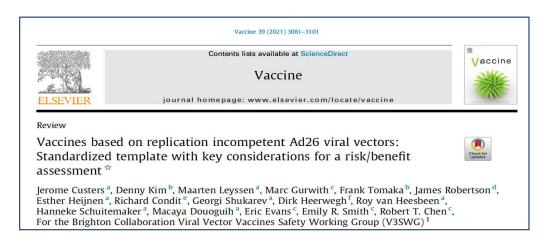


- Viral Vektör: korunmanın hedefle dağıtımının sağlanması
 - Viral vektör kendisi hastalık oluş
 - Vektör olarak en sik kullanılan v
 - Hücre içinde çoğalabilenler (rep
 - Anahtar genler devre dışı bırakıl


Viral vectored

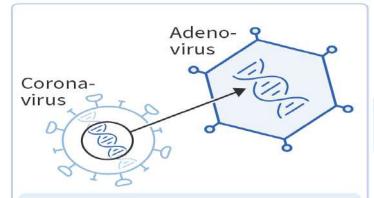
Activating immunity by stealth

The Oxford/AstraZeneca Covid-19 vaccine uses a viral-vector, meaning it delivers the genetic code for a SARS-CoV-2 protein inside the weakened form of a different virus

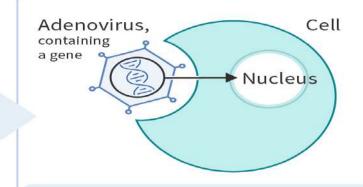

*Common viruses that cause a range of cold-like symptoms Source: Vaccine pipeline/Nature journal/CDC/astrazeneca.com

- <u>Viral Vektör</u>: korunmanın hedeflendiği enfeksiyon hastalığına ait antijenleri taşıyan ve dağıtımının sağlanması
 - Viral vektör kendisi hastalık oluşturmayacak şekilde programlanmıştır.
 - Vektör olarak en sık kullanılan virüsler: Adenovirüs, Kızamık, Vaccinia virüs
- Viral vektörler
 - Hücre içinde çoğalabilenler (replicating)
 - Anahtar genler devre dışı bırakıldığı için çoğalma yeteneği olmayanlar (non-replicating)
- COVID-19 aşısı öncesi EBOLA aşısında (vektörü veziküler stomatir virüsü) çalışmaları yapılmış ve onay almıştır.
- Viral vektör aşılarının dezavantajı, insanlar daha önce viral vektöre maruz kalmışsa ve buna karşı bir bağışıklık tepkisi geliştirmişse, potansiyel olarak aşının etkinliğini azaltabilmesidir.

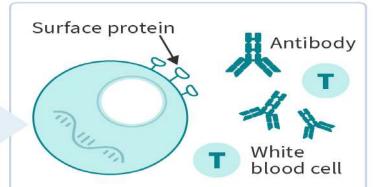
5.19. What is known about the effect of pre-existing immunity, including both natural immunity and repeat administration of the vector or the vaccine, on 'take', safety or efficacy in any animal model or human studies using this vector?



Data acquired to date, in more than 6,000 vaccinated human participants, have not revealed impact of pre-existing vector immunity on the vaccine insert specific humoral or cellular response. Repeated administration with the Ad26 vector leads to an increase in antigen specific humoral responses and a maintenance of cellular responses. With more than 114,000 participants vaccinated overall, no safety issues have been identified.



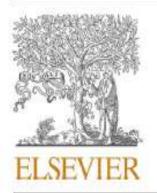
How does the vector vaccine work against coronavirus?



A coronavirus contains a gene that directs cells to produce the coronavirus surface protein (spike protein). In the vaccine, this gene has been turned into a part of the genome of a harmless carrier virus.

The carrier virus takes the gene into a cell at the injection site.

The carrier virus for the coronavirus vaccine is an adenovirus. It cannot reproduce inside the body.


The cell starts producing surface protein on its surface according to the instruction of the gene. The body recognises the protein doesn't belong there and starts to fight it off.

#coronavirus

Illustration. Sources: Nature, THL 2020

Seminars in Immunology 50 (2020) 101430


Contents lists available at ScienceDirect

Seminars in Immunology

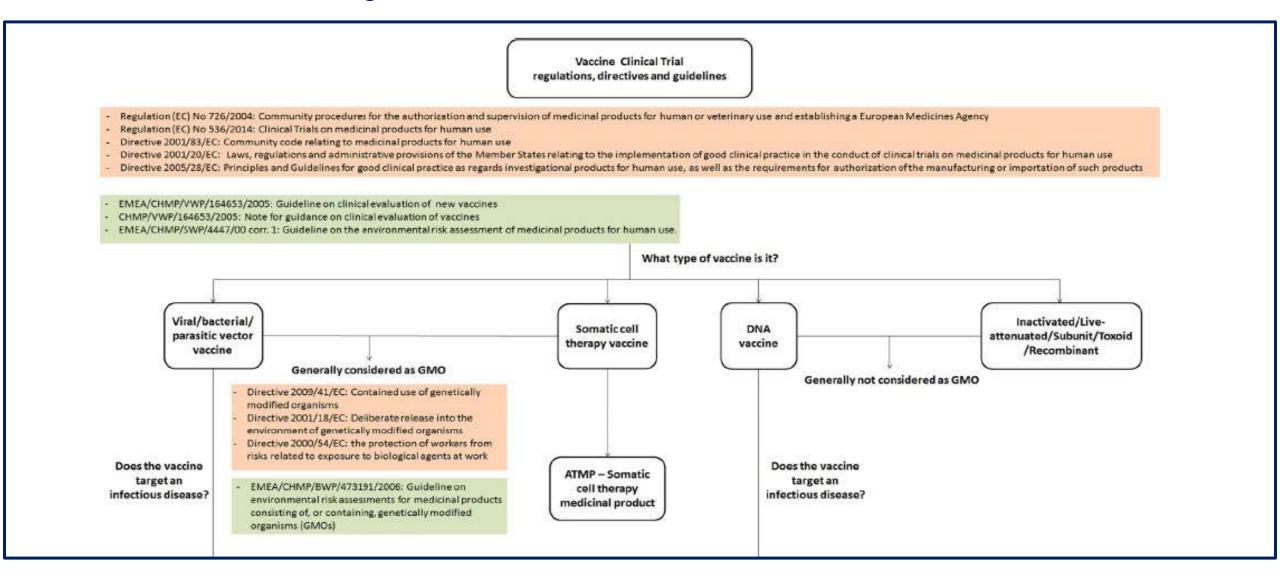
journal homepage: www.elsevier.com/locate/ysmim

Review

Emanuele Sasso ^{a, b, 1}, Anna Morena D'Alise ^{a, 1}, Nicola Zambrano ^{b, c}, Elisa Scarselli ^a, Antonella Folgori ^d, Alfredo Nicosia ^{b, c}, *

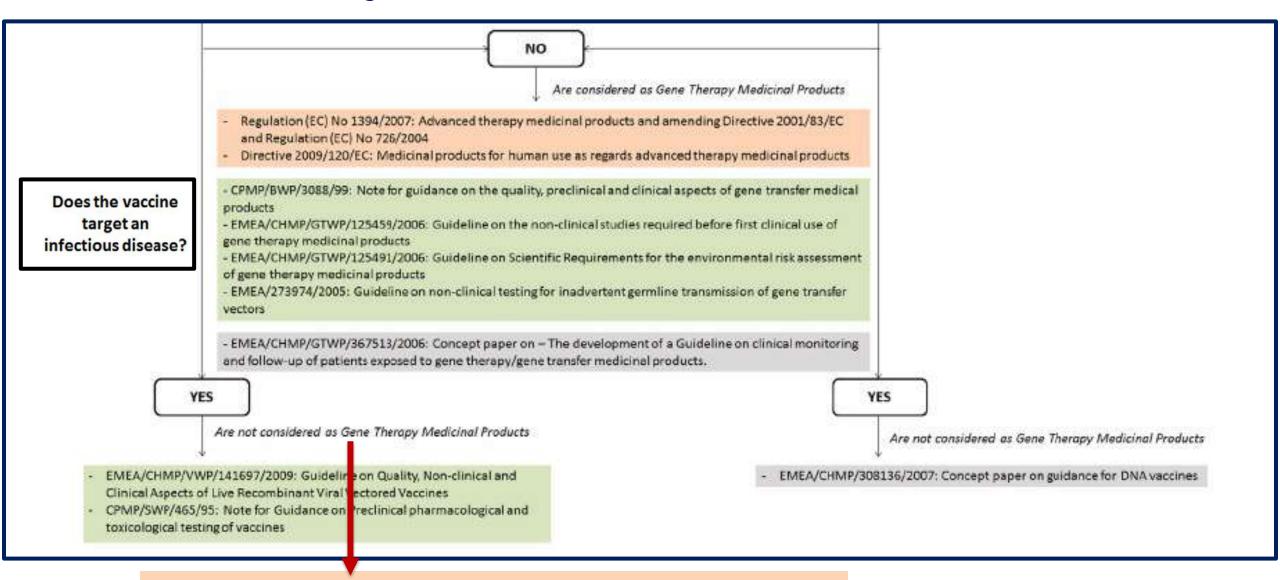
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days.

Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.



REGÜLASYON

		Number° of GMO-containing vaccine clinical trials	Absolute	% (out of
	Vaccine 37 (2019)	per country in Europe: 2004-2017 Austria	n°	147 trials) 2.7
	vacenie 37 (2013)	Belgium	13	
VA.		Bulgaria	2	1.4
米山梨的种类的	Contents lists available	Czech republic	2	1.4
		Denmark	3	2.0
Contract Contract		Estonia	1	0.7
S-SHEWI	Vacci	Finland	5	3.4
C.N.		France	14	9.5
		Germany	18	
FISEVIER	journal homepage: www.else	Hungary	7	4.8
DEVIETTER		Iceland	1	0.7
NE		Ireland	1	0.7
Review		Italy	4	2.7
REVIEW		Lithuania	1	0.7
Cl: -: 1 4 : -1	:41 CMO	Netherlands	8	5.4
Clinical trials w	ith GMO-containing vaccine	Norway	1	0.7
	The second secon	Poland	3	2.0
regulatory fram	iework	Romania	1	0.7
		Slovakia	1	0.7
Florence Kauffmani	n ^a , Pierre Van Damme ^b , Geert Lerou	Spain	16	
			4	
Claire Beuneu ^e , Sté	pnanie Mali S	UK	91	
		TOTAL including all multi-country trials	201	
		TOTAL representing each multi-country trial as one trial	147	100



REGÜLASYON

REGÜLASYON

Enfeksiyon hastalıklarına yönelik olarak geliştirilen aşılar, Gen Tedavisi olarak kabul edilmemektedir.

REGÜLASYON

Vaccine 39 (2021) 3067-3080

Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Review

The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform

Ariane Volkmann^a, Anna-Lise Williamson^b, Heinz Weidenthaler^a, Thomas P.H. Meyer^a, James S. Robertson^c, Jean-Louis Excler^d, Richard C. Condit^e, Eric Evans^f, Emily R. Smith^{f,*}, Denny Kim^g, Robert T. Chen^f, For the Brighton Collaboration Viral Vector Vaccines Safety Working Group V3SWG¹

REGÜLASYON

3.6. What is the risk of integration into the human genome?

Review

The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform

Ariane Volkmann^a, Anna-Lise Williamson^b, Heinz Weidenthaler^a, Thomas P.H. Meyer^a, James S. Robertson^c, Jean-Louis Excler^d, Richard C. Condit^e, Eric Evans^f, Emily R. Smith f.*, Denny Kim^g, Robert T. Chen, For the Brighton Collaboration Viral Vector Vaccines Safety Working Group V3SWG¹

Very low

Poxviral vectors are considered nonintegrating according to the EMA 'Guideline on nonclinical testing for inadvertent germline transmission of gene transfer vectors', because they lack the machinery to actively integrate their genome into the host chromosomes.1 MVA, as well as other members of the Poxviridae family, is unusual among deoxyribonucleic acid (DNA) viruses in that they replicate in the cytoplasmic compartment of the cell. Compared to other DNA viruses, the possibility for integration of their genetic material into the host chromosome is therefore extremely low [47]. In addition, vaccinia infection results in

cell death

REGÜLASYON

Vaccine 39 (2021) 3081-3101

Contents lists available at ScienceDirect

Vaccine

Review

Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment **

Jerome Custers ^a, Denny Kim ^b, Maarten Leyssen ^a, Marc Gurwith ^c, Frank Tomaka ^b, James Robertson ^d, Esther Heijnen ^a, Richard Condit ^e, Georgi Shukarev ^a, Dirk Heerwegh ^f, Roy van Heesbeen ^a, Hanneke Schuitemaker ^a, Macaya Douoguih ^a, Eric Evans ^c, Emily R. Smith ^c, Robert T. Chen ^c, For the Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) ¹

REGÜLASYON

3.6. What is the risk of integration into the human genome? Negligible

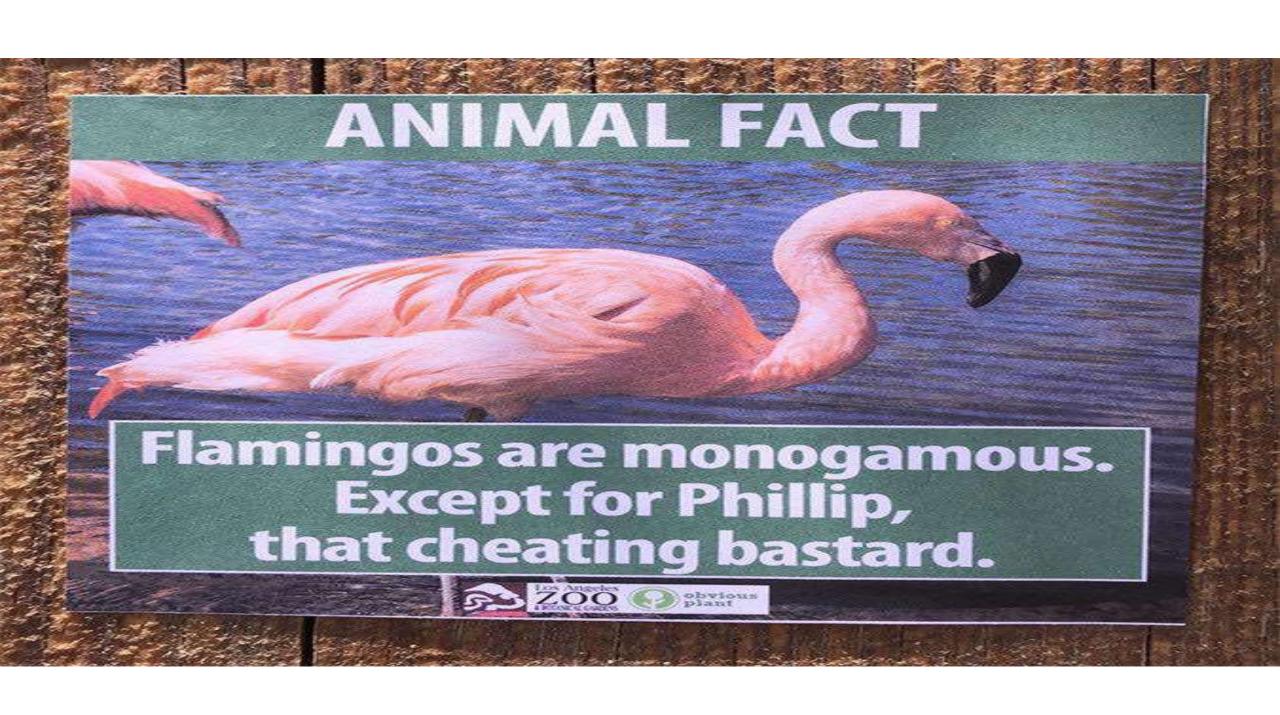
Vaccine 39 (2021) 3081-3101

Contents lists available at ScienceDirect

Vaccine

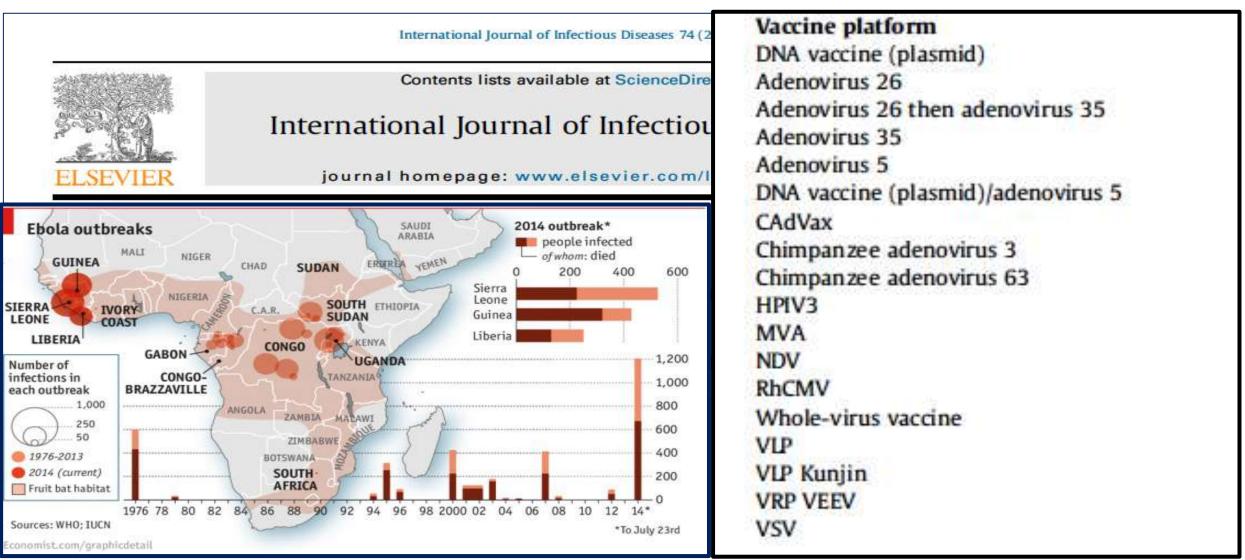
journal homepage: www.elsevier.com/locate/vaccine

Review


Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment [♠]

Jerome Custers ^a, Denny Kim ^b, Maarten Leyssen ^a, Marc Gurwith ^c, Frank Tomaka ^b, James Robertson ^d, Esther Heijnen ^a, Richard Condit ^e, Georgi Shukarev ^a, Dirk Heerwegh ^f, Roy van Heesbeen ^a, Hanneke Schuitemaker ^a, Macaya Douoguih ^a, Eric Evans ^c, Emily R. Smith ^c, Robert T. Chen ^c, For the Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) ¹

Adenoviruses are considered nonintegrating according to the EMA 'Guideline on nonclinical testing for inadvertent germline transmission of gene transfer vectors', because they lack the machinery to actively integrate their genome into the host chromosomes. The adenoviral genome remains epichromosomal, thus avoiding the risk of integration of the viral DNA into the host genome following cell infection. Therefore, chromosomal integration of genetic material of Ad26 in the human host is unlikely.



VİRAL HEMORAJİK ATEŞ

iral hemorrhagic fev Order	Fa	Vaccinia virus strains used	l for smallpox vac	cines.		ibution
Amarillovirales	Fla	Virus strain	Parental strain	Vaccine generation a	LD ₅₀ (pfu) b	ypt, Djibouti, India de
		Ikeda		First	≤6.3x10^5	in India ern Europe, Northern
		NYCBH		First	2.9x10^6	nerica
Bunyavirales	Ar	CV1-78		First	\leq 6.3x10^5	
		Lister (Elstree)		First	6.3x10 ⁶	
		EM63	NYCBH	First	1.4x10^7	
		Dairen-I		First		nd South America,
		ACAM1000	NYCBH	Second		
		ACAM2000	ACAM1000	Second		
	Ha	LC16	Lister	Third	\geq 6.3x10^8	
		DIs	Dairen-I	Third	\geq 6.3x10^8	
	Na	MVA	Ankara	Third	and the second s	terranean and
		LC16m8	LC16	Third		, northwestern China, ica, the Middle East,
	Ph	LC16m8∆	Lc16m8	Fourth		ubcontinent uth Korea, Vietnam,
		NYVAC	Copenhagen	Fourth		ica
Mononegavirales	Fil	MVTT	Tian Tan	Fourth		
		E3L deletion mutants		Fourth		

EBOLA AŞILARI

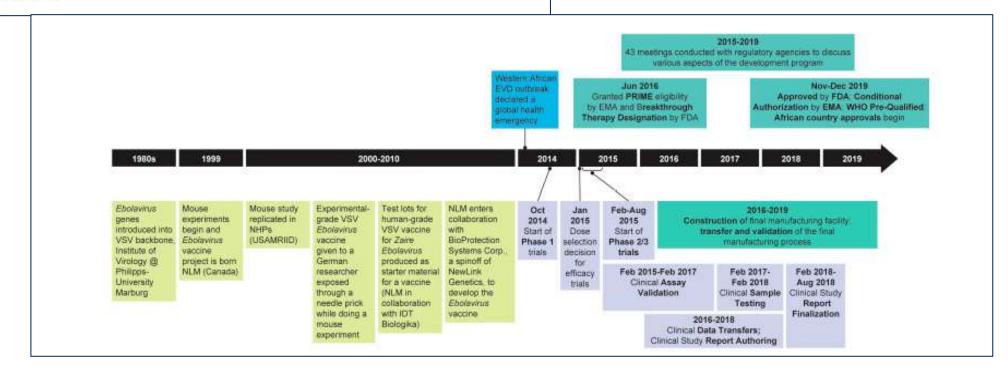
EBOLA AŞILARI

Table 2									
Status of candidate Ebola vaccines									
Company/institution/ country	(Vaccine name)/Ebola component glycoprotein	Vector	Administration	Storage temperature	Target population	Comments			
Merck USA/Public Health Agency Canada	(Ervebo)Recombinant VSV-ZEBOV-Ebola Kikwit strain Replication competent vaccine	VSV	Single dose	60°C to -80°C for 36 months and 2°C-8°C for 14 says	Active immunization (reactive use) of at risk subjects ≥18 years of age	2016- granted Breakthrough Therapy Designation by the US FDA and PRIME status by the European Medicines Agency (EMA) and in 2019, granted medical use in EU and USA. Used extensively in the Kivu Ebola epidemic under a compassionate use protocol			
Johnson & Johnson (USA) and MVA-BN Filo, Bavarian Nordic (Denmark)	(Zabdeno)MVA-BN-Filo encodes Ebola virus, Sudan virus, and Marburg virus glycoproteins, and Tai Forest virus nucleoprotein	Human adenoviral serotype 26 or MVA	Heterologous prime boost regimen	Ad26.ZEBOV: 20°C or 60°C for up to 60 months and +2 to +8°C for up to 12 months	Adults and children ≥ 1 year of age	Granted approval by Committee for Medial Products for Human Use -European Medicines Agency (CHMP-EMA) in 2020 as a two-dose regimen for the prevention of Ebola virus disease. Seeking licensure under the Animal Rule and/or to European Medicines Agency.			
				MVA-BN-Filo: 20°C or 60°C for up to 60 months and +2 to +8°C for up to 6 months		Collaborative.			
GlaxoSmithKline (UK) and, for MVA-BN-Filo, Bavarian Nordic (Denmark) - NIAID/GSK	(ChAd3-EBO-Z) with or without MVA-BN-Filo Ebola virus, Mayinga strain (1976)	Chimpanzee adenoviral serotype 3 or MVA	Single dose or heterologous prime- boost regimen			Ongoing clinical evaluation			
Academy of Military Medical Sciences and CanSino Biologics (China)	(Ad5-ZEBOV) Ebola virus, Makona strain (2014)	Human Adenoviral serotype 5	Single dose or homologous prime- boost regimen	Freeze-dried powder, stable for more than 2 weeks even if kept at a temperature of 37°C;		Licensed in China			

EBOLA AŞILARI

Gamalei Scientific Research Institute of Epidemiology and	(GamEvac-Combi and GamEvac-Lyo) Monovalent	VSV and Ad5- vectored vaccine	Heterologous prime boost regimen	16°C to -20°C for 12 months 4°C for lyophilized formulation	18-55 years	Licensed in Russia
Microbiology (Russia)	Zaire (Makona)					
Novavax, USA	(NVX-CoV2373). Nanoparticle recombinant Ebola GP Vaccine) Monovalent Zaire (Makona)	Contains the full- length SARS- CoV-2 spike protein and Novavax' patented Matrix- M1 adjuvant	2 doses 21 days apart,	2° to 8°C for six months, and 24 hours at room temperature	18-65 years	Efficacy 89.3 %.
Inovio Pharmaceuticals, USA	(INO-4201 DNA vaccine) Plasmid of Ebola outbreak strains from 1976-2006		2 doses four weeks apart	+2°C to +8°C for 3 years and 25°C for 1 year 37°C for 1 month 60°C for several days	≥ 18 years	In 95% (170/179) of evaluable subjects generated an Ebola-specific antibody immune response,
FBRI SRC VB VECTOR, Rospotrebnadzor, Russia	(EpivacEbola) Monovalent Zaire (Makona)		2 doses (prime + boost on 28 days)	2-8°C for 1 year Can extend shelf life to 2 years	18-55 years	Licensed in Russia since 2016

EBOLA AŞILARI

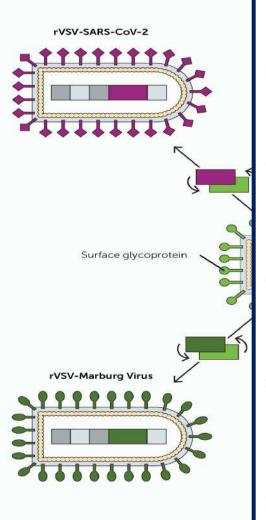


Review

Development of Pandemic Vaccines: ERVEBO Case Study

Jayanthi Wolf ¹, Risat Jannat ², Sheri Dubey ³, Sean Troth ⁴, Matthew T. Onorato ⁵, Beth-Ann Coller ⁶, Mary E. Hanson ⁷, and Jakub K. Simon ⁶,*

IAVI's VSV EID vaccine platform


When VSV infects its natural host, a strong immune response develops against the surface glycoprotein.

VSV is recombimantly modified (rVSV) by replacing the gene that codes for its surface glycoprotein with a gene coding for the surface glycoprotein from a target virus.

When given as a vaccine, rVSV infects cells in the body and produces new virus coated with the surface glycoprotein from the target virus.

The immune system responds by producing antibodies against the surface glycoprotein from the target virus.

If the vaccinated person later encounters the target virus, memory cells from the immune system rapidly produce antibodies that block the infection and prevent disease.

4

EIDs by the numbers

50% average case fatality rate for Ebola virus and Marburg virus disease

100,000 – 300,000 cases of Lassa fever occur annually

15% average case fatality rate for people hospitalized with Lassa fever

> 263 million confirmed cases of COVID-19 in 23 months

100% efficacy for the rVSVvectored Ebola Zaire vaccine in a Phase III trial

AVI EID vaccines in preclinical development; 1 in clinical development

COVID19 AŞILARI

COVID-19 - Landscape of novel coronavirus candidate vaccine development worldwide

11 Subat 2022 Cuma

DISCLAIMER: These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed or construed as, any approval or endorsement by WHO of such product or entity (or any of its businesses or activities). While WHO takes reasonable steps to verify the accuracy of the information presented in these landscape documents, WHO does not make any (and hereby disclaims all) representations and warranties regarding the accuracy, completeness, fitness for a particular purpose (including any of the aforementioned purposes), quality, safety, efficacy, merchantability and/or non-infringement of any information provided in these landscape documents and/or of any of the products referenced therein. WHO also disclaims any and all liability or responsibility whatsoever for any death, disability, injury, suffering, loss, damage or other prejudice of any kind that may arise from or in connection with the procurement, distribution or use of any product included in any of these landscape documents.

Summary Information on Vaccine Products in Clinical Development 1. - Number of vaccines in clinical development 142 195 142 2. - Number of vaccines in pre-clinical development 195 100 50 ■ Vaccines in pre-clinical development ■ Vaccines in clinical development 3. - Candidates in clinical phase 15% 20% 25% 30% 35% Filter Select phase of development (default is all) Platform Candidate vaccines (no. and %) DNA Wnr Viral Vector (non-replicating) RNA Inactivated Virus VVr Viral Vector (replicating) VLP Virus Like Particle 4% VVr + APC Wr + Antigen Presenting Cell 1% LAV Live Attenuated Virus VVnr + Antigen Presenting Cell 1% VVnr + APC BacAg-SpV 142

COVID19 AŞILARI

4	VVnr	Viral vector (Non-replicating)	ChAdOx1-S - (AZD1222)	1-2	Day 0 + 28	IM	AstraZeneca + University of Oxford	Phase 4
5	VVnr	Viral vector (Non-replicating)	Recombinant novel coronavirus vaccine (Adenovirus type 5 vector)	1	Day 0	IM	CanSino Biological Inc./Beijing Institute of Biotechnology	Phase 4
6	VVnr	Viral vector (Non-replicating)	Recombinant COVID-19 vaccine (adenovirus type 5 vector) for Inhalation (Ad5-nCoV-IH)	1	Day 0	IH	CanSino Biological Inc./Beijing Institute of Biotechnology	Phase 3
7	VVnr	Viral vector (Non-replicating)	Gam-COVID-Vac Adeno-based (rAd26-S+rAd5-S)	2	Day 0 + 21	IM	Gamaleya Research Institute ; Health Ministry of the Russian Federation	Phase 3
8	VVnr	Viral vector (Non-replicating)	Ad26.COV2.S	1-2	Day 0 or Day 0 +56	IM	Janssen Pharmaceutical	Phase 4
26	VVnr	Viral vector (Non-replicating)	GRAd-COV2 (Replication defective Simian Adenovirus (GRAd) encoding S)	1	Day 0	IM	ReiThera + Leukocare + Univercells	Phase 2/3
27	VVnr	Viral vector (Non-replicating)	VXA-CoV2-1 Ad5 adjuvanted Oral Vaccine platform	2	Day 0 + 28	Oral	Vaxart	Phase 2
28	VVnr	Viral vector (Non-replicating)	MVA-SARS-2-S	2	Day 0 + 28	IM	University of Munich (Ludwig-Maximilians)	Phase 1
		Viral vector (Replicating)	V591-001 - Measles-vector based (TMV-o38)	1-2	Day 0 + 28	IM	Merck & Co. + Themis + Sharp & Dohme + Institute Pasteur	Phase 1/2
38	VVr	Viral vector (Replicating)	DelNS1-2019-nCoV-RBD-OPT1 (Intranasal flu-based-RBD)	2	Day 0 + 28	IN	University of Hong Kong, Xiamen University and Beijing Wantai Biological Pharmacy	Phase 3
42	VVr + APC	Viral vector (Replicating) + APC	Covid-19/aAPC vaccine. The Covid-19/aAPC vaccine is prepared by applying lentivirus modification with immune modulatory genes and the viral minigenes to the artificial antigen presenting cells	3	Day 0 + 14 + 28	sc	Shenzhen Geno-immune Medical Institute	Phase 1
43	VVnr + APC	Viral vector (Non-replicating) + APC	LV-SMENP-DC vaccine. Dendritic cells are modified with lentivirus vectors expressing Covid-19 minigene SMENP and immune modulatory genes. CTLs are activated by LV-DC presenting Covid-19	1	Day 0	SC & IV	Shenzhen Geno-Immune Medical Institute	Phase 1/2
49	VVnr	Viral vector (Non-replicating)	Human Adenovirus Type 5: hAd5 S+N bivalent vaccine (S-Fusion + N-ETSD). E2b- Deleted Adeno.	1-2	Day 0 + 21	SC or Oral or SL	ImmunityBio, Inc	Phase 1/2
50	VVnr	Viral vector (Non-replicating)	COH04S1 (MVA-SARS-2-S) - Modified vaccinia ankara (sMVA) platform + synthetic SARS-CoV-2	1-2	Day 0 + 28	IM	City of Hope Medical Center + National Cancer Institute	Phase 1
51	VVr	Viral vector (Replicating)	rVSV-SARS-CoV-2-S Vaccine (IIBR-100)	1	Day 0	IM	Israel Institute for Biological Research	Phase 2/3
52	VVr + APC	Viral vector (Replicating) + APC	Dendritic cell vaccine AV-COVID-19. A vaccine consisting of autologous dendritic cells loaded	1	Day 0	IM	Aivita Biomedical, Inc;	Phase 2
58	VVnr	Viral vector (Non-replicating)	AdCLD-CoV19 (adenovirus vector)	1	Day 0	IM	Cellid Co., Ltd.	Phase 1/2
	E ⁶	Viral vector (Non-replicating)	AdCOVID, Adenovirus-based platform expresses receptor-binding domain (RBD) of spike protein	1-2	Day 0	IN	Altimmune, Inc.	Phase 1
71	VVnr	Viral vector (Non-replicating)	BBV154, Adenoviral vector COVID-19 vaccine	1	Day 0	IN	Bharat Biotech International Limited	Phase 1
77	VVnr	Viral vector (Non-replicating)	Chimpanzee Adenovirus serotype 68 (ChAd) and self-amplifying mRNA (SAM) vectors expressing spike alone, or spike plus additional SARS-CoV-2 T cell epitopes.	2-3	Day 0 + 14 + 28 or Day 0 + 28 + 56 or Day 0 + 112	IM	Gritstone Oncology	Phase 1
88	VVr	Viral vector (Replicating)	COVIVAC. Newcastle Disease Virus (NDV) expressing membrane-anchored pre-fusion-stabilized trimeric SARS-CoV-2 S protein +/- adjuvant CpG 1018	2	Day 0 + 28	IM	Institute of Vaccines and Medical Biologicals, Vietnam	Phase 1/2
89	VVnr	Viral vector (Non-replicating)	SC-Ad6-1, Adneviral vector vaccine	1-2	Day 0 +/- 21	IM	Tetherex Pharmaceuticals Corporation	Phase 2
101	VVnr	Viral vector (Non-replicating)	Modified Vaccinia Virus Ankara (MVA) vector expressing a stabilized SARS-CoV-2 spike protein	2	Day 0 + 28	IM	German Center for Infection Research	Phase 1/2
109	VVnr	Viral vector (Non-replicating)	PIV5 vector that encodes the SARS-CoV-2 spike protein	1	Day 0	IN	CyanVac LLC	Phase 1
110	VVnr	Viral vector (Non-replicating)	AZD2816; adenoviral vector ChAdOx platform and based on the Beta (B.1.351) variant	2	Day 0 + 28	IM	AstraZeneca + University of Oxford	Phase 2/3
121	VVnr	Viral vector (Non-replicating)	AAV5-RBD-S vaccine (BCD-250), A recombinant Adenovirus-Associated viral Vector (AAV-5) encoding spike protein	1	Day 0	IM	Biocad	Phase 1/2
131	VVnr	Viral vector (Non-replicating)	Ad5-triCoV/Mac or ChAd-triCoV/Mac, new experimental adenovirus-based vaccines expressing SARS-CoV- 2 spike, nucleocapsid and RNA polymerase proteins	1	Day 0	AE	McMaster University	Phase 1
140	VVr	Viral vector (Replicating)	NDV-HXP-S; A Live Recombinant Newcastle Disease Virus-vectored COVID-19 Vaccine	1	Day 0	IN/IM	Sean Liu, Icahn School of Medicine at Mount Sinai	Phase 1

WHO. Landscape of novel coronavirus candidate vaccibe development worldwide. 11 Fberuary 2022

COVID19 AŞILARI

32	VVnr	Viral vector (Non-replicating)	Sendai virus vector	SARS-CoV2		ID Pharma
33	VVnr	Viral vector (Non-replicating)	Sendai virus vector	CARC C-V2	DCV CMV	Non-District Control Control Control
34	VVnr	Viral vector (Non-replicating)	Adenovirus-based	SARS-CoV2		Ankara University
35	VVnr	Viral vector (Non-replicating)	Adeno-associated virus vector (AAVCOVID)	SAILS COVE		massachasette eye ana eary mossachasette seneral mospitaly mente
36	VVnr	Viral vector (Non-replicating)	MVA encoded VLP	SARS-CoV2	LASV, EBOV, MARV, HIV	GeoVax/BravoVax
37	VVnr	Viral vector (Non-replicating)	MVA-S	SAKS-COVZ		питвать-ноѕрітат сііпіс, ъраіп
38	VVnr	Viral vector (Non-replicating)	Adeno5-based	SARS-CoV2		Erciyes University
39	VVnr	Viral vector (Non-replicating)	Ad5 S (GRE)/AY™ platform)	SARS-COV?	MERC	IGrattov
40	VVnr	Viral vector (Non-replicating)	Oral Ad5 S	SARS-CoV2	Zika, VZV, HSV-2 and Norovirus	Stabilitech Biopharma Ltd
41	VVnr	Viral vector (Non-replicating)	Adenovirus-based + HLA-matched peptides	Pan-Corona		Valo Therapeutics Ltd
42	VVnr	Viral vector (Non-replicating)	MVA expressing structural proteins	SARS-CoV2	Multiple candidates	Centro Nacional Biotecnología (CNB-CSIC), Spain
43	VVnr	Viral vector (Non-replicating)	Parainfluenza virus 5 (PIV5)-based vaccine expressing the spike protein	SARS-CoV2	MERS	University of Georgia/University of Iowa
44	VVnr	Viral vector (Non-replicating)	Recombinant deactivated rabies virus containing S1	SARS-CoV2	HeV, NiV, EBOV, LASSA, CCHFV, MERS	Bharat Biotech/Thomas Jefferson University
45	VVnr	Viral vector (Non-replicating)	Influenza A H1N1 vector	SARS-CoV2		National Research Centre, Egypt
46	VVnr	Viral vector (Replicating)	Newcastle disease virus expressing the spike protein	SARS-CoV2		Icahn School of Medicine at Mount Sinai
47	VVnr	Viral vector (Non-replicating)	Newcastle disease virus expressing membrane-anchored spike	SARS-CoV2		Icahn School of Medicine at Mount Sinai
48	VVnr	Viral vector (Non-replicating)	Lentiviral Vector	SARS-CoV2		Theravectys – Institut Pasteur
49	VVnr	Viral vector (Non-replicating)	Lentiviral Vector	SARS-CoV2		AIOVA
50	VVnr	Viral vector (Non-replicating)	Lentiviral Vector Retro-VLP Particles	SARS-CoV2		Sorbonne University
51	VVnr	Viral vector (Non-replicating)	Ad 5 vector for intranasal administration	SARS-CoV2		University of Helsinki & University of Eastern Finland
52	VVnr	Viral vector (Non-replicating)	Oral vaccine platform	SARS-CoV2	InfA, CHIKV, LASV, NORV; EBOV, RVF, HBV, VEE	Vaxart
53	VVnr	Viral vector (Non-replicating)	Recombinant Adenovirus Vector (Type 5) + Spike protein of SARS-CoV-2	SARS-CoV2	2024-0-41-We-92030-0-0-0	Pasteur Institute / Iran
54	VVnr	Viral vector (Non-replicating)	Recombinant Adenovirus Vector (ChAdOx1) + Spike protein of SARS-CoV-2	SARS-CoV2		Pasteur Institute / Iran
55	VVnr	Viral vector (Non-replicating)	Adenovirus-based	SARS-CoV2		Home Iman Zist Fanavar
56	VVnr	Viral vector (Non-replicating)	Chimpanzee adenovirus vector expressing the RRD-dimer without adjuvant	SARS-CoV2		Chengdu Kanghua Biological Products Co. Ltd.

COVID19 AŞILARI

Sponsor	Location	Status	Doses	Timing of doses	Route	Age	Enrollment	Clinical Phase	
University of Hong Kong, Xiamen University and Beijing Wantai Biological Pharmacy	China	Recruiting	1	ND	IN	≥18	2 group different size	Phase II (ChiCTR2000039715)	
Israel Institute for Biological Research/ Weizmann Institute of Science	Israel	Recruiting	1	ND	IM	18–85	1040	Phase I/II (NCT04608305)	
Shenzhen Geno-Immune Medical Institute	China	Recruiting	3	0, 14, 28 days	SC	6 Months to 80 Years	100	Phase I)NCT04299724)	
Cellid Co., Ltd.	South Korea	Recruiting	1	ND	IM	19–64	150	Phase I /II) NCT04666012)	
Aivita Biomedical, Inc	USA	Not yet recruiting	1	0	IM	≥18	175	Phase I /II (NCT04386252)	
Mahidol University, The Government Pharmaceutical Organization	Thailand	Not yet recruiting	2	0, 28 days	IM	18–75	460	Phase I /II) NCT04764422)	

COVID-19

ADENOVİRÜS VEKTÖR AŞILARI

Drug Metabolism and Pharmacokinetics 42 (2022) 100432

Contents lists available at ScienceDirect

Drug Metabolism and Pharmacokinetics

journal homepage: http://www.journals.elsevier.com/drug-metabolism-andpharmacokinetics

Review article

Adenovirus vector-based vaccine for infectious diseases

Fuminori Sakurai a, , Masashi Tachibana b, c, Hiroyuki Mizuguchi a, c, d, e, **


Clinically	annound	Ad	Transfer of	reagain on	for	COVID-19.
Chimicaniv	abbroved	ACI	vector	vaccines	IOL	COVID-19.

Ad vector vaccine	Developer	Type of Ads	Antigens
ChAdOx1 nCoV-19 (VAXZEVRIA, AZD1222)	AstraZeneca /University of Oxford (UK)	Chimpanzee Ad	Spike protein
Ad26.COV2-S	Johnson & Johnson (Europe)	Ad serotype 26	Spike protein
Sputnik V	Gamaleya Research Institute (Russia)	Ad serotype 26 (prime) Ad serotype 5 (boost)	Spike protein
Ad5-nCOV	CanSino Biologics Inc. (China)	Ad serotype 5	Spike protein

COVID-19

OXFORD VACCINE PROJECT

- SARS-CoV-2 spike protein
- ChAdOx1 (Jenner Institute)
 - Replike olmayan şempanze adenovirüs vektörü

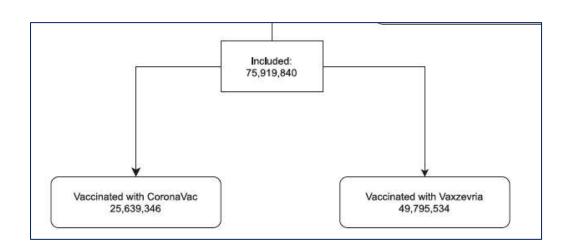
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

Merryn Voysey*, Sue Ann Costa Clemens*, Shabir A Madhi*, Lily Y Weckx*, Pedro M Folegatti*, Parvinder K Aley, Brian Angus, Vicky L Baillie, Shaun L Barnabas, Qasim E Bhorat, Sagida Bibi, Carmen Briner, Paola Cicconi, Andrea M Collins, Rachel Colin-Jones, Clare L Cutland, Thomas C Darton, Keertan Dheda, Christopher J A Duncan, Katherine RW Emary, Katie J Ewer, Lee Fairlie, Saul N Faust, Shuo Feng, Daniela M Ferreira, Adam Finn, Anna L Goodman, Catherine M Green, Christopher A Green, Paul T Heath, Catherine Hill, Helen Hill, Ian Hirsch, Susanne H C Hodgson, Alane Izu, Susan Jackson, Daniel Jenkin, Carina C D Joe, Simon Kerridge, Anthonet Koen, Gaurav Kwatra, Rajeka Lazarus, Alison M Lawrie, Alice Lelliott, Vincenzo Libri, Patrick J Lillie, Raburn Mallory, Ana V A Mendes, Eveline P Milan, Angela M Minassian, Alastair McGregor, Hazel Morrison, Yama F Mujadidi, Anusha Nana, Peter J O'Reilly, Sherman D Padayachee, Ana Pittella, Emma Plested, Katrina M Pollock, Maheshi N Ramasamy, Sarah Rhead, Alexandre V Schwarzbold, Nisha Singh, Andrew Smith, Rinn Song, Matthew D Snape, Eduardo Sprinz, Rebecca K Sutherland, Richard Tarrant, Emma C Thomson, M Estée Török, Mark Toshner, David P J Turner, Johan Vekemans, Tonya L Villafana, Marion E E Watson, Christopher J Williams, Alexandre D Douglas*, Adrian V S Hill*, Teresa Lambe*, Sarah C Gilbert*, Andrew J Pollard* on behalf of the Oxford COVID Vaccine Trial Group†


COVID-19

AZD-1222 /VAXZEVRIA

	Total number of cases	ChAdOx1 nCoV-19	Oğ.	Control		Vaccine efficacy (CI*)
		n/N (%)	Incidence rate per 1000 person-years (person-days of follow-up)	n/N (%)	Incidence rate per 1000 person-years (person-days of follow-up)	
All LD/SD and SD/SD recipients	131	30/5807 (0.5%)	44-1 (248 299)	101/5829 (1.7%)	149-2 (247 228)	70-4% (54-8 to 80-6)†
COV002 (UK)	86	18/3744 (0.5%)	38-6 (170 369)	68/3804 (1-8%)	145.7 (170 448)	73·5% (55·5 to 84·2)
LD/SD recipients	33	3/1367 (0.2%)	14.9 (73313)	30/1374 (2.2%)	150-2 (72 949)	90-0% (67-4 to 97-0)‡§
SD/SD recipients	53	15/2377 (0.6%)	56-4 (97 056)	38/2430 (1-6%)	142-4 (97 499)	60-3% (28-0 to 78-2)
COV003 (Brazil; all SD/SD)	45	12/2063 (0-6%)	56-2 (77 930)	33/2025 (1-6%)	157-0 (76780)	64-2% (30-7 to 81-5)‡
All SD/SD recipients	98	27/4440 (0-6%)	56-4 (174 986)	71/4455 (1-6%)	148-8 (174279)	62·1% (41·0 to 75·7)
Other non-primary symptomatic COVID-19 disease¶	18	7/5807 (0.1%)	10.3 (248 299)	11/5829 (0.2%)	16-3 (247 228)	36·4% (-63·8 to 75·3)‡
Any symptomatic COVID-19 disease	149	37/5807 (0-6%)	54-4 (248 299)	112/5829 (1-9%)	165-5 (247228)	67·1% (52·3 to 77·3)
Asymptomatic or symptoms unknown (COV002)	69	29/3288 (0.9%)	69-8 (151 673)	40/3350 (1.2%)	96-0 (152138)	27·3% (-17·2 to 54·9)
LD/SD recipients	24	7/1120 (0.6%)	41-4 (61782)	17/1127 (1-5%)	100-6 (61730)	58·9% (1·0 to 82·9)‡
SD/SD recipients	45	22/2168 (1.0%)	89-4 (89 891)	23/2223 (1-0%)	92-9 (90408)	3.8% (-72.4 to 46.3)
Any NAAT-positive swab	221	68/5807 (1.2%)	100-0 (248 299)	153/5829 (2.6%)	226-0 (247 228)	55·7% (41·1 to 66·7)


AZD-1222 /VAXZEVRIA

Influence of age on the effectiveness and duration of

protection of Vaxzevria and CoronaVac vaccines:

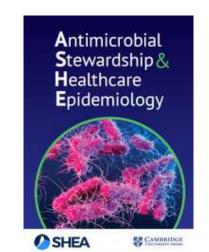
A population-based study

Thiago Cerqueira-Silva, ab, 1 Vinicius de Araújo Oliveira, ab, 1 Viviane S. Boaventura, ab, 1 Julia M. Pescarini, d Juracy Bertoldo Júnior, La Santa Machado, Renzo Flores-Ortiz, Gerson O. Penna, Maria Yury Ichihara, Jacson Venâncio de Barros, Mauricio L. Barreto, Guilherme Loureiro Werneck, and Manoel Barral-Netto

AZD-1222 /VAXZEVRIA

	Vaxzevria/Fiocruz				Corona Vac/Butantan				
	Person-years	Events	Incidence per 100 person-years	VE% (95% CI)*	Person-years	Events	Incidence per 100 person-years	VE% (95% CI)*	
Infection									
Reference period	1 662 565-5	130,302	7-84	Ref	855,542-2	68,126	7-96	Ref	
Partially vaccinated	5 550 664-6	247,799	4-46	50-4 (49-6-51-1)	1,290,469-1	74,895	5-80	28-7 (27.1-30.2)	
Fully vaccinated	572 003-4	14,771	2-58	78-1 (77-2-79-0)	4,574,691-4	194,864	4-26	53-2 (52-4-54-1)	
Hospitalization									
Reference period	1,664,388-0	22,449	1-35	Ref	856,418-3	16,289	1.90	Ref	
Partially vaccinated	5,587,966-0	28,713	0-51	70.9 (69-7-72-1)	1,303,567-1	15,076	1-16	38-4 (35-5-41-2)	
Fully vaccinated	580,979-1	1292	0-22	91.4 (90-1-92-5)	4,624,347-6	28,810	0-62	71.2 (70-0-72-4)	
ICU admission									
Reference period	1,664,660-2	7558	0-45	Ref	856,597-5	6008	0-70	Ref	
Partially vaccinated	5,592,952-5	9907	0-18	71-0 (69-0-73-0)	1,307,124-7	5560	0.43	39-6 (34-8-44-0)	
Fully vaccinated	581,594-0	477	0-08	91-1 (88-9-92-9)	4,629,831-8	10,364	0-22	72-2 (70-2 - 74-0	
Death									
Reference period	1,664,670-8	7037	0-42	Ref	856,563-2	7852	0-92	Ref	
Partially vaccinated	5,592,331-8	10,579	0-19	69-7 (67-5-71-8)	1,305,706-9	7203	0-55	39-0 (34-9-42-9)	
Fully vaccinated	581,648-9	564	0-10	92-3 (90-5-93-7)	4,629,255-8	13,166	0.28	73-7 (72-1-75-2)	

Table 1: Vaccine effectiveness in adults partially and fully vaccinated with Vaxzevria and CoronaVac for COVID-19 infection, hospitalization, ICU admission, and death. Brazil, 2021.



^{*} Reference period: ≤13 days after the first dose; Partially vaccinated: ≥14 days after the first dose and without the second dose; Fully vaccinated: ≥14 days after the second dose. ICU denotes intensive care unit.

^{*} Negative binomial model adjusted for age, sex, region of residence, month of administration of first dose, municipal deprivation level and Effective Reproductive Number (Rt).

AZD-1222 /VAXZEVRIA

Vaccine	Outcome	No. of Studies Included	Participants, No.	Pooled Diagnostic Odds Ratio [DOR] (95% CI)	I ² test for heterogeneity, %	Vaccine Effectiveness, % (95% CI) ^a
mRNA or viral vector	Infection	10	16,456,882	0.158 (0.157-0.160)	0	84.2 (84.0-84.3)
Pfizer/BioNTech	Infection	5	15,575,120	0.185 (0.184-0.187)	0	81.5 (81.3-81.6)
mRNA or viral vector	Infection during the δ variant period	4	11,476,256	0.388 (0.367-0.410)	0	61.2 (59.0-63.3)
mRNA or other vaccines	Hospitalization	8	3,194,708	0.113 (0.029-0.442)	0	88.7 (55.8-97.1)
Pfizer/BioNTech	Hospitalization	6	1,133,521	0.146 (0.140-0.152)	51	85.4 (84.8-86.0)
Moderna	Hospitalization	5	142,981	0.102 (0.096-0.108)	32	89.8 (89.2–90.4)

Antimicrobial Stewardship & Healthcare Epidemiology (2022), 2, e22, 1–12 doi:10.1017/ash.2021.261

Review

The long-term effectiveness of coronavirus disease 2019 (COVID-19) vaccines: A systematic literature review and meta-analysis

AŞI YANITI ÜZERİNE ETKİLİ FAKTÖRLER

Intrinsic host factors

Age Sex Genetics Comorbidities

Perinatal host factors

Gestational age Birth weight Breastfeeding Maternal antibodies Maternal infections during pregnancy Other maternal factors

Extrinsic factors

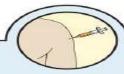
Infections **Parasites** Antibiotics Probiotics & prebiotics Microbiota Preexisting immunity

Behavioral factors

Smoking Alcohol consumption Exercise Acute psychological stress Chronic psychological stress Sleep

Nutritional factors

Body mass index Nutritional status Micronutrients (vitamin A, D, E & Zn) Enteropathy


Environmental factors

Rural vs urban Geographic location Season Family size Toxins

Vaccine factors

Vaccine type Vaccine product Vaccine strain Adjuvants Vaccine dose

Administration factors

Vaccination schedule Vaccination site Vaccination route Needle size Time of day Coadministered vaccines Coadministered drugs

FIG 1 Factors that influence the immune response to vaccination.

Clinical Microbiology MICROBIOLOGY Reviews®

AZD-1222 /VAXZEVRIA

- Aralık 2020'de İngiltere'de acil kullanım onayı aldı.
- Hastaneye yatış gerektiren enfeksiyonda %80 azalma
- 6 hafta ara ile 2 doz uygulama %55, 12 hafta ara ile 2 doz uygulama %81
- 28-34 gün ara ile aşılamada hastanede yatış %94 \downarrow (80 yaş üzerinde %81 \downarrow)
- 15 Şubat 2021 WHO-EUL (yaşlılarda etkinin azalmış olduğu uyarısı ile)
- ABD'de başvurusu yok (FDA)
- Alfa varyantından koruyuculuğu iyi olmakla birlikte, beta varyantından (Güney Afrika) koruma %10 (nötralizasyon antikor yanıtı beta varyantında 9 kat ↓
- İlk doz alfa etkililiği %48.7, delta etkililiği %30.7
- İkinci dozda alfa için %74.5, delta etkililiği %67

AZD-1222 /VAXZEVRIA

- Tromboembolik olay (Mart 2021)
- EMEA uyarısı 5 milyon kişide 30 venöz tromboemboli
 - 32-54 yaş arası
 - Platelet faktör 4 antikorları (heparin ilişkili trombositopeni gibi ama heparin kullanım öyküsü yok)
 - VACCINE INDUCED IMMUNE THROMBOTIC THROMBOCYTOPENIA
- C terminaline yer alan solubl spike protein varynatları (endotelde ACE-2 reseptörlerine bağlanma)
 - Vaccine-induced COVID-19 mimicry syndrome (VIC19M syndrome).

AZD-1222 /VAXZEVRIA

- EMEA aşı sonrası 2 hafta içerisinde tromboemboli riski artışı tanımlamış ama fayda-zarar dengesi <u>fayda yönünde</u> değerlendirilmiş.
- 8 Eylül 2021 EMEA
 - Tromboz-trombositopeni olguları (592 milyon uygulamada 1503 olgu).
 - Guillain Barre sendromu uyarısı (592 milyon uygulamada 883 olgu)
 - Nadiren kapiller kaçak sendromu
 - Serebral ven trombozu (trombositopeni olmaksızın)
 - Karın ağrısı, kol ve bacaklarda soğuma, influenza benzeri bulgular
 - Menstrüel bozukluklar ile ilişki gösterilmemiştir.

JANNSEN ADV26 AŞISI

Non Replicating Viral Vector 1

<u>Janssen (Johnson & Johnson)</u>

Ad26.COV2.S

Approved in 106 countries **18 trials** in 18 countries

RESEARCH SUMMARY

Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19

Sadoff J et al. DOI: 10.1056/NEJMoa2101544

BACKGROUND

Vaccines are needed to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Safe adenovirus vector-based vaccines have induced durable immune responses to other diseases.

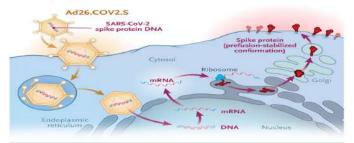
CLINICAL TRIAL

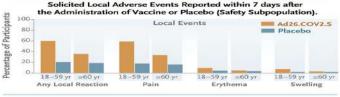
Design: A randomized, double-blind trial to evaluate the safety and efficacy of Ad26.COV2.S, a recombinant, replication-incompetent human adenovirus 26 vector encoding a full-length membrane-bound SARS-CoV-2 spike protein.

Intervention: 19,630 participants ≥18 years old were assigned to receive a single intramuscular dose of Ad26.COV2.S, and 19,691 were assigned to placebo. Participants were monitored for safety and for the occurrence of moderate to severe—critical Covid-19 with onset ≥14 days and ≥28 days after injection.

RESULTS

Efficacy: The incidence of moderate to severe—critical Covid-19 with onset ≥14 days and ≥28 days was lower among vaccine recipients. The incidences of severe—critical Covid-19 (including incidence in South Africa, despite high prevalence of the 20H/501Y.V2, or B.1.351, variant), hospitalization, and death were lower with vaccine than with placebo.


Safety: Vaccine recipients were more likely to have reactogenicity, mostly injection-site pain, as well as systemic symptoms of headache, fatigue, myalgia, or nausea. Most symptoms were mild to moderate in severity and lasted 1 to 2 days.


LIMITATIONS AND REMAINING QUESTIONS

Further study is required to understand the following:

- Safety and efficacy of Ad26.COV2.S in children.
- Long-term safety and efficacy and whether the vaccine protects against asymptomatic transmission.
- Efficacy against emerging SARS-CoV-2 variants.

Links: Full article | NEJM Quick Take

Variable		≥14	Days after #	Administra	ition	
	Ad26.C		(N = 1		Vaccine Efficacy (95% CI)	
	no. of cases	person-yr	no. of cases	person-yr	96	
Moderate to severe- critical Covid-19	116	3116.6	348	3096.1	66.9 (59.0-73.4	
18–59 yr	95	2106.8	260	2095.0	63.7 (53.9-71.6	
≥60 yr	21	1009.8	88	1001.2	76.3 (61.6-86.0	
Variable	≥28 Days after Administration					
Moderate to severe- critical Covid-19	66	3102.0	193	3070.7	66.1 (55.0-74.8	
18-59 yr	52	2097.6	152	2077.0	66.1 (53.3-75.8	
≥60 yr	14	1004.4	41	993.6	66.2 (36.7-83.0	

CONCLUSIONS

A single dose of Ad26.COV2.S was safe and efficacious against symptomatic Covid-19.

Spike protein ile vektör olarak Adenovirüs 26 (replike olmayan)

- Tek doz aşı uygulaması ile aşılananarın %90'ında antikor yanıtı
- Tek doz aşı uygulaması ile orta-ağır enfeksiyondan %66 koruma, hastaneye yatış ve ölümden %100 korunma
- FDA, EUA onayı
- Alfa, beta, gamma, epsilon etkili.
- Splanik ven trombozu, serebral ven trombozu, derin ven trombozu
- 6.8 milyon doz uygulamada 6 olgu (18-48 yaş kadınlar) aşı uygulaması durduruldu.
- Tromboz ve trombositopeni aşılamadan 6-13 gün sonrasında oluyor.
- Yeniden kullanım izni, aşıdan 3 hafta içerisinde semptom takibi

ADENOVIRÜS AŞILARI GÜVENLİK

American Journal of Emergency Medicine 49 (2021) 58-61

Contents lists available at ScienceDirect

American Journal of Emergency Medicine

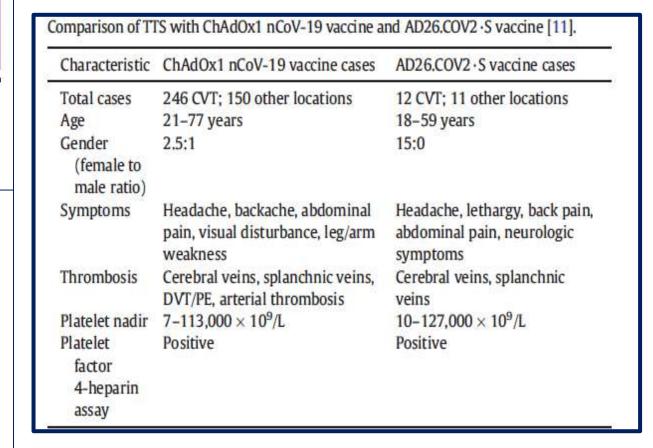
journal homepage: www.elsevier.com/locate/ajem

Reviews

Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines

Brit Long, M.D. a,1,*, Rachel Bridwell, M.D. a, Michael Gottlieb, M.D. b

TTS definition, recommended testing, and management [11,12].


Definition

- 1) Exposure to the ChAdOx1 nCoV-19 or AD26.COV2·S vaccine 4–30 days prior to presentation
- 2) Thrombosis (arterial or venous)
- 3) Thrombocytopenia ($<150 \times 10^9/L$)
- Positive PF4-heparin ELISAPresume TTS in patients with signs and symptoms of serious thrombosis and one of the following: positive imaging, thrombocytopenia, or both

Recommended evaluation Management CBC, peripheral smear, D-dimer, fibrinogen, coagulation panel, PF4-heparin ELISA; imaging based on assessment

- 1) IVIG 1-2 g/kg/day for 2 days
- 2) Anticoagulation: argatroban or bivalirudin first line
- 3) Avoid heparin, platelet transfusion, antiplatelet therapies

PF4-heparin ELISA, platelet factor 4-heparin enzyme-linked immunosorbent assay; TTS, thrombosis with thrombocytopenia syndrome; CBC, complete blood count; IVIG, intravenous immunoglobulin.

Gam-COVID-Vac (Gamaleya, Sputnik)

Non Replicating Viral Vector 1

<u>Sputnik Light</u>

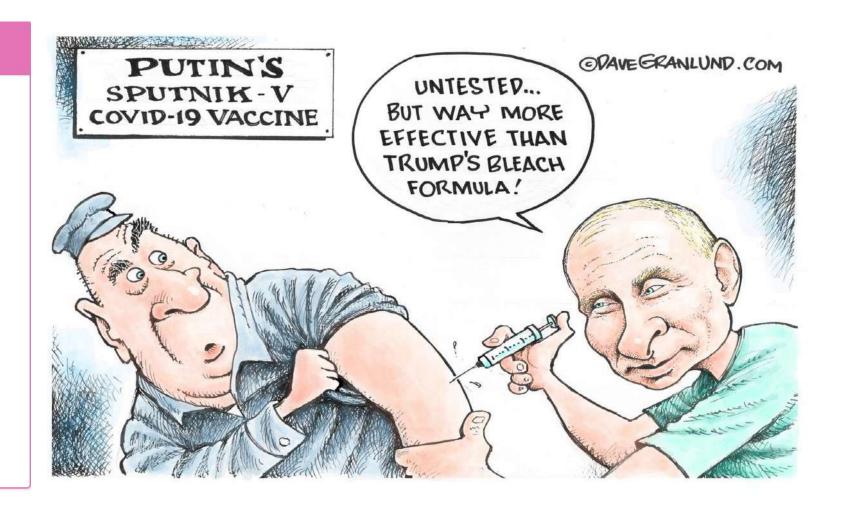
Approved in 26 countries **4 trials** in 2 countries

Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia

Denis Y Logunov*, Inna V Dolzhikova*, Olga V Zubkova, Amir I Tukhvatullin, Dmitry V Shcheblyakov, Alina S Dzharullaeva, Daria M Grousova, Alina S Erokhova, Anna V Kovyrshina, Andrei G Botikov, Fatima M Izhaeva, Olga Popova, Tatiana A Ozharovskaya, Ilias B Esmagambetov, Irina A Favorskaya, Denis I Zrelkin, Daria V Voronina, Dmitry N Shcherbinin, Alexander S Semikhin, Yana V Simakova, Elizaveta A Tokarskaya, Nadezhda L Lubenets, Daria A Egorova, Maksim M Shmarov, Natalia A Nikitenko, Lola F Morozova, Elena A Smolyarchuk, Evgeny V Kryukov, Vladimir F Babira, Sergei V Borisevich, Boris S Naroditsky, Alexander L Gintsburg

Gam-COVID-Vac (Gamaleya, Sputnik)

Non Replicating Viral Vector 10


<u>Gamaleya</u>

Sputnik V

Approved in 74 countries

22 trials in 7 countries

Ad5-nCoV (CanSino)

Non Replicating Viral Vector 1

- Adenovirüs 5 vektör aşıs
- Erken Faz 1 çalışması (aç sonrasında humoral ve h
- Faz 2 çalışmasında (5 × 1 yetersiz olması nedeni ile
- Aşınının mukozal immün değerlendiriliyor.
- Hayvan çalışmalarında, i alt solunum yolu enfeksi (kişiler arası bulaşın azal

CanSino

Convidecia

Approved in 10 countries

13 trials in 6 countries

ilmiş ve tek doz aşı

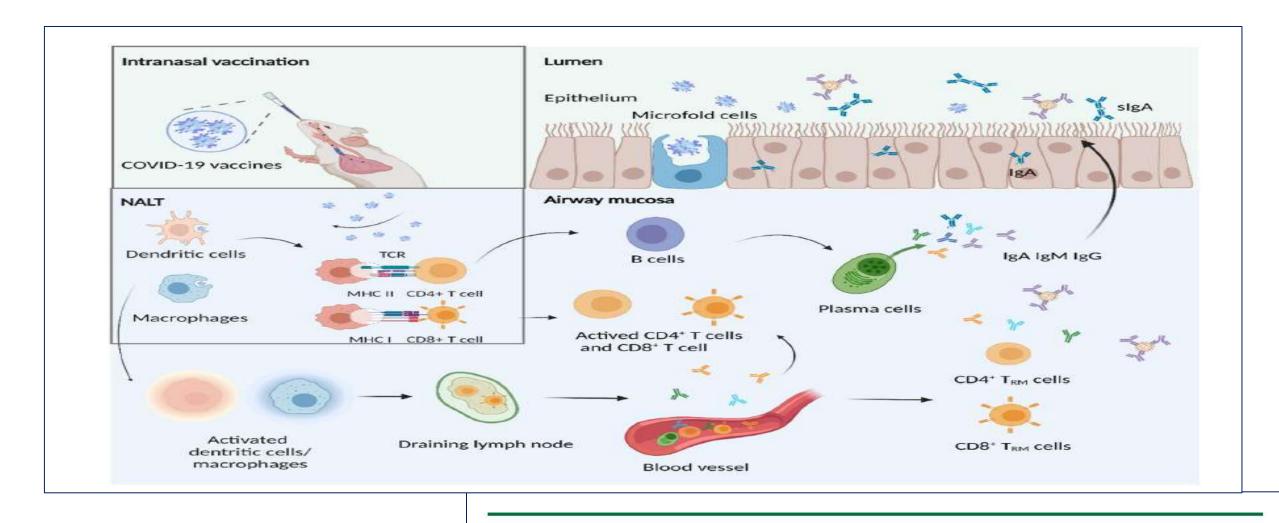
da antikor yanıtının

rlikte mukozal uygulama

ıkozal uygulamanın üst ve etkili olduğu gösterilmiş uçlar henüz gösterilmedi.

FARKLI AŞILARI KARŞILAŞTIRILMASI

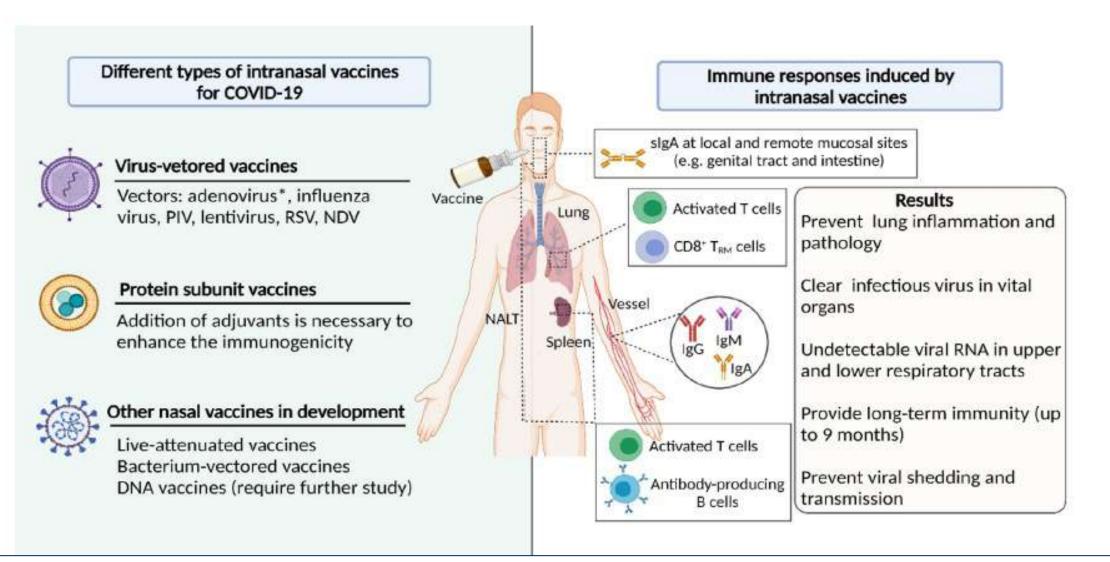
VİRAL VEKTÖR AŞILARI-COVID19-ÇOCUK



Merlin Coles, 3, watches horse racing at Royal Ascot from his home in Bere Regis, England, on June 17. The boy is sitting on his horse, Mr. Glitter Sparkles, with his dog, Mistress, as racing resumed behind closed doors.

INTRANAZAL AŞILAR

Intranasal COVID-19 vaccines: From bench to bed



Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China

İNTRANAZAL AŞILAR

INTRANAZAL AŞILAR

Туре	Vaccine	Target	Route (no. of doses)	Animal used
PIV5-vectored vaccine	CVXGA1	S protein	IN (1)	K18-hACE2 mice and ferrets ⁵⁵
hPIV2-vectored vaccine	BCPIV/S-2PM	S protein	IN (1or 2)	Mice and golden hamsters 56
NDV-vectored vaccine	AVX/COVID-12- HEXAPRO	S protein	IN +IN, IM + IM, or IN + IM, (2)	Mice, hamsters ⁶⁰ , and pigs ⁵⁹
	NDV-FLS	S protein	IN (1 or 2)	Hamsters ⁶¹
	rNDV-S	S protein	IN (2)	Mice and hamsters ⁶²
VSV-vectored vaccine	rVSVSARS-CoV-2	S protein	IN or IM, (1)	Normal/hACE2 mice, and macaques ⁶³
	VSV-SARS2-EBOV	SARS-CoV-2 S protein and/or the EBOV glycoprotein	IM orIN, (1)	Hamsters ⁶⁴ and rhesus macaques ⁶⁵
Virus like particles		RBD protein	IM alone or IM + IN, (3)	Ferrets ⁷²
Live-attenuated vaccine	SARS-CoV-2/ human/ Korea/ CNUHV03- CA22 °C /2020		IN spray (1)	hACE2 transgenic mice ⁷⁶
	COVI-VAC		IN (1)	Syrian golden hamsters ⁷⁷
Bacterium-vectored vaccine		M and N proteins	ID or IN, (2)	Hamsters ⁷⁸
	LP18:RBD	RBD	IN (2)	Mice ⁷⁹
Protein subunit vaccine		RBD protein	IN, IM or ID, (3)	Mice ³⁴
		S1 protein	IM (3) or IN (4)	Rhesus macaques ⁷³
		RBD protein	IN or IM, (3)	Mice ⁶⁹
		S1 protein	IN (3)	Mice 70
		Trimeric or monomeric S protein	IN (1)	Mice ⁷¹
DNA vaccine	pQAC—CoV; MVA- CoV	S and N proteins	IN or IM, (3), or IN (2)	Mice ⁸¹
		S protein	IN	Mice ⁹⁰

INTRANAZAL AŞILAR

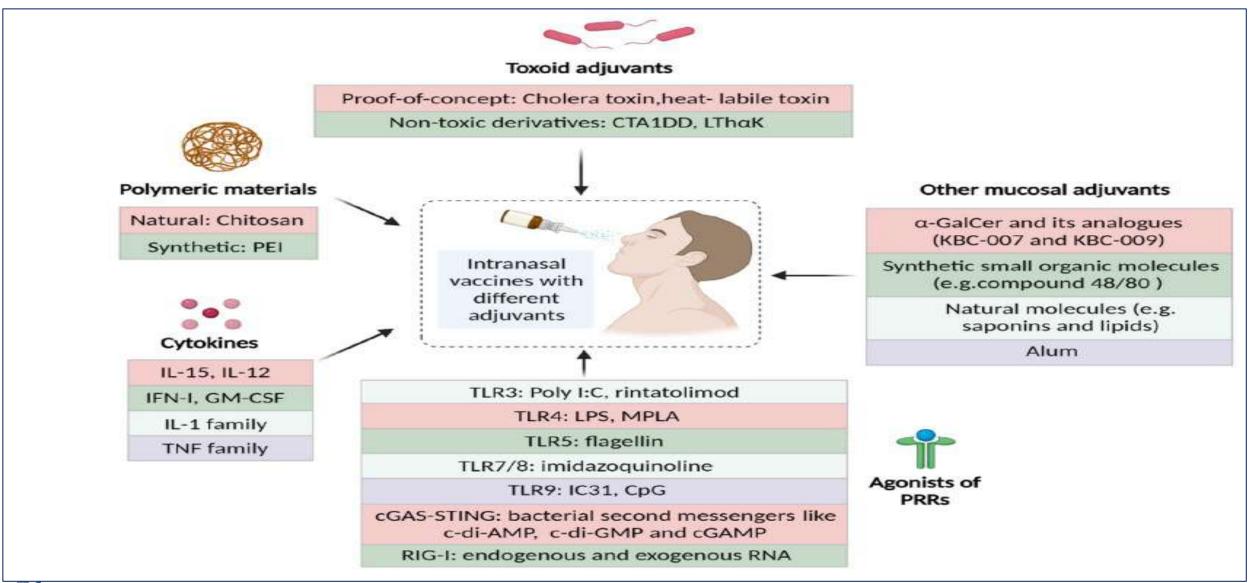

Туре	Vaccine	Developer/manufacturer	Nasal delivery device	Phase	Status	Enrollment	Clinical trial No.	Route
Ad-vectored vaccine	Ad5-nCoV	CanSino/Beijing Institute of Biotechnology	Aerogen Ultra Device	1	Active, not recruiting	149	NCT04552366	IN, IM or IN+IM
				1/11	Recruiting	840	NCT04840992	IM or IN
	ChAdOx1	AstraZeneca/University of Oxford	MAD Nasal [™] Intranasal Mucosal Atomization Device	1	Enrolling by invitation	54	NCT04816019	IN
	BBV154	Bharat Biotech International Limited	N/A	1	Active, not recruiting	175	NCT0475 1682	IN
	SC-Ad6-1	Tetherex Pharmaceuticals Corporation	N/A	I	Recruiting	80	NCT04839042	IM or IN
	AdCOVID	Altimmune, Inc.	Pipette droppers	1	Not processing	180	NCT04679909	IN
NDV-vectored vaccine	AVX/COVID-12- HEXAPRO	Laboratorio Avi-Mex, S.A. de C.V.	An automatic syringe (Prima mist sprayer)	1	Recruiting	90	NCT04871737	IN, IM or IN+IM
LAIV-vectored vaccine	DelNS1-2019-	University of Hong Kong, Xia-	Spray devices	1	Complete	60	ChiCTR2000037782	IN
	nCoV-RBD-OPT1	men University and Beijing		H	Complete	720	ChiCTR2000039715	IN
		Wantai Biological Pharmacy		Ш	_	40,000	ChiCTR2100051391	IN
PIV5-vectored vaccine	CVXGA1	CyanVac LLC	Spray devices	1	Not recruiting	80	NCT04954287	IN
RSV-vectored vaccine	MV-014-212	Meissa Vaccines, Inc.	Droppers or spray devices	1	Recruiting	130	NCT04798001	IN
Protein subunit vaccine	CIGB-669	CIGB	Syringe-based spray devices	1/11	Pending	88	RPCEC00000345	IN alone or IN + IM
	Razi Cov Pars	Razi Vaccine and Serum	Spray devices	Ĭ	Complete	133	IRCT20201214049709N1	IM + IN
		Research Institute		11	Complete	500	IRCT20201214049709N2	IM + IN
				Ш	_	41,128	IRCT20210206050259N3	IM + IN
Live attenuated vaccine	COVI-VAC	Codagenix, Inc.	Droppers	1	Active, not recruiting	48	NCT04619628	IN

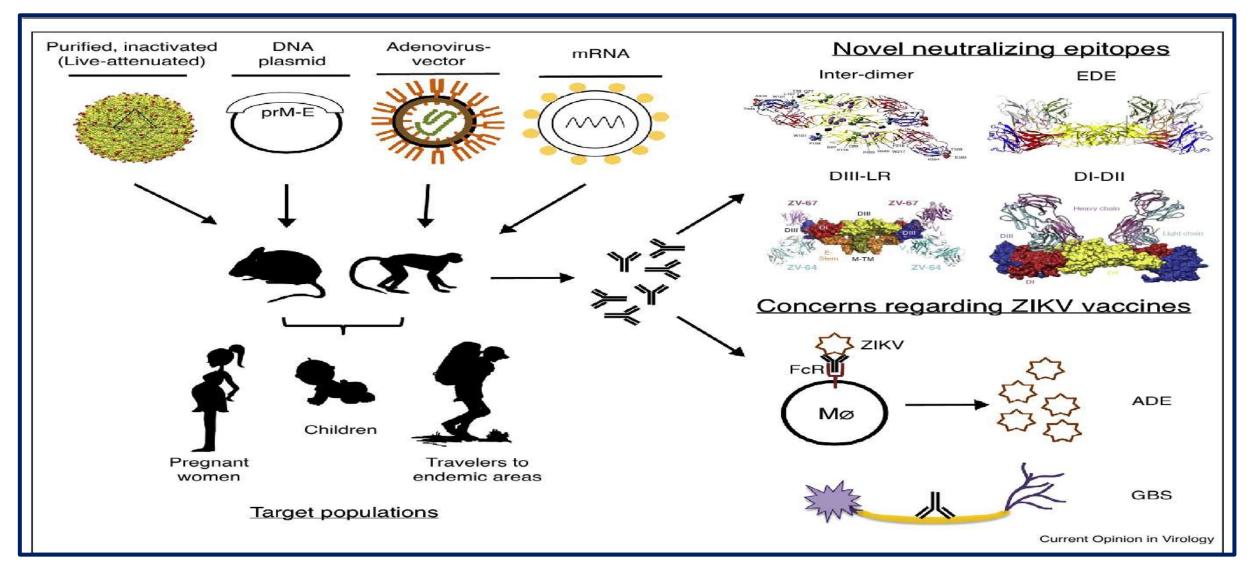
Table 2: Clinical trials of IN COVID-19 vaccines.

NDV: Newcastle disease virus; LAIV: live attenuated influenza virus; PIV: parainfluenza virus; RSV: respiratory syncytial virus; N/A: Not available. Data from https://clinicaltrials.gov/, https://www.chictr.org.cn/index.aspx and https://covid-19.cochrane.org/.

INTRANAZAL AŞILAR

Kızamık Virüs Vektör

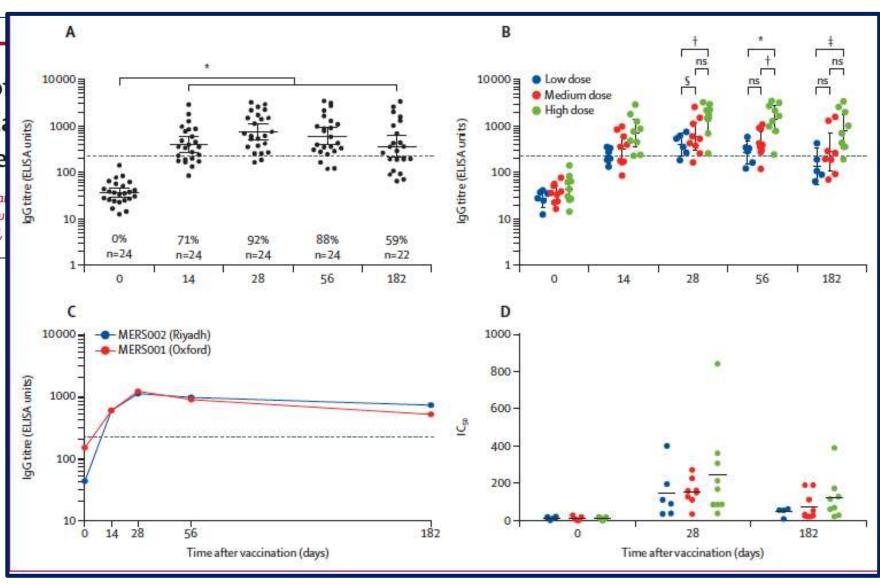
- Kızamık virüsü sitoplazma içerisinde replike olan, konakçı kromozomuna entegre olma potansiyeli yok.
- Genetik stabilitesi yüksek, düşük ücretle yüksek doz üretme potansiyeli mevcut.
- Attenüe kızamık suşu ile MERS ve SARS-CoV çalışmalarında olumlu sonuçlar
- Daha önceden kızamık hastalığına ya da aşısına bağlı mevcut immünitenin, yeni aşı adayının immunolojik yanıtına etkisi olmamış (Chikungunya-MV-based)
- Schwartz kızamık suşu
- Ağustos 2020'de Fransa ve Belçika'da SARS-CoV-2 aşısı Faz 1-2 (V591-001- Measlesvector based (TMVo38)



Newcastle Disease Virüs Vektör

- Rekombinant Newcastle disease virus (NDV) vektörü
- İnsan ve kanatlı kaynaklı ciddi enfeksiyonlarda ümit veren sonuçlar mevcut
- Daha önceden geçirilmiş enfeksiyona ait immünite olasılığı çok düşük.
- Afrika'da SARS-COV-NDV aşı adayı ile yapılan deneysel çalışmalarda yüksek nötralizan antikor yanıtı
- Inactivated SARS-COV-2-NDV-based vaccine: Deneysel çalışmalarda antikor yanıtı iyi.
- Avantajı, etkin aşı geliştirilmesi durumunda düşük maliyet ile yüksek doz üretim olanağı

ZİKAVİRÜS AŞILARI



MERS-CoV

Safety and immunogenicity or candidate in healthy Middle Ea an open-label, non-randomise

Mohammad Bosaeed, Hanan H Balkhy, Sultan Almaziad, Haya A Alja. Mohammed W Alenazi, Abdulrahman Almasoud, Rawan Alanazi, Mu Pedro Folegatti, Fernando Ramos Lopez, Katie Ewer, Khalid Almoaikel,

Lancet Microbe 2022: 3: e11-20

RSV

O060 / #506

CHAD155-VECTORED RESPIRATORY SYNCYTIAL VIRUS (RSV) INVESTIGATIONAL VACCINE (CHAD155-RSV) IS IMMUNOGENIC WHEN ADMINISTERED AT DIFFERENT DOSE LEVELS IN INFANTS AGED 6–7 MONTHS

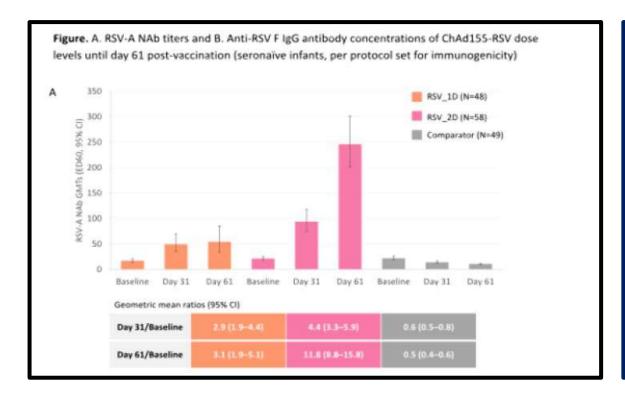
PARALLEL SESSION

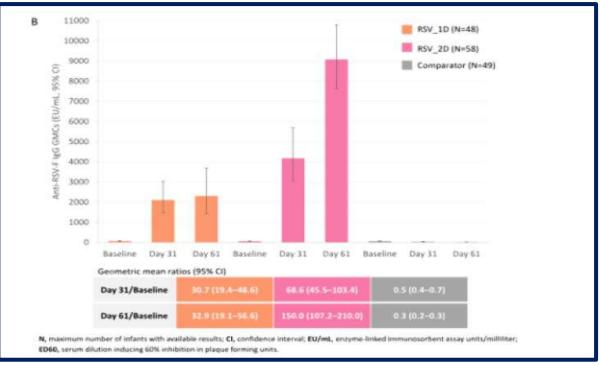
PRE-RECORDED +LIVE: ORAL PRESENTATIONS 07: RSV CLINICAL AND VACCINES

Evan Anderson¹, Fernando Baquero Artigao², Francois D Boucher³, James Daniel Campbell⁴, Guido Castelli Gattinara⁵, Benhur Sirvan Cetin⁶, <u>Javier Díez-Domingo</u>⁷, Ener Cagri Dinleyici⁸, Cristina Epalza⁹, Saul Faust¹⁰, Tolga Ince¹¹, Aleksander Krasnow¹², Ernest Kuchar¹³, Joanne M Langley¹⁴, Kathia Luciani¹⁵, Mercedes Macias Parra¹⁶, Miguel Angel Marin Gabriel¹⁷, Federico Martinón-Torres¹⁸, Jose Manuel Merino Arribas¹⁹, Marisa Márcia Mussi-Pinhata²⁰, Ximena Norero²¹, Jorge Pinto²², Xavier Sáez-Llorens^{21,23}, Ignacio Salamanca De La Cueva²⁴, Leszek Szenborn²⁵, Henryk Szymanski²⁶, Bruce Tapiero²⁷, Ilkka Seppa²⁸, Eduardo López-Medina²⁹, Mika Rämet²⁸, Jose Tomas Ramos Amador³⁰, Thanyawee Puthanakit³¹, Ilse Dieussaert³², Damien Friel³³, Antonio Gonzalez Lopez^{32,34}, Roderick Mcphee^{32,35}, Vanja Nikic³², Sonia K Stoszek³², Wayne Woo^{32,36}, Nicolas Vanhoutte³⁷

#ESPID2021

espidmeeting.org


Methods: In this phase I/II observer-blind, controlled study conducted in 13 countries, infants aged 6-7 months were randomized (1:1:1) to receive either 1 dose of ChAd155-RSV 1.5x10¹⁰viral particles (vp) and 1 placebo dose (RSV_1D group), 2 doses of ChAd155-RSV 5x10¹⁰vp (RSV_2D group) or 2 comparator doses (placebo or vaccine [meningococcal or pneumococcal]) on days 1 and 31. We evaluated RSV-A neutralizing antibody (NAb) geometric mean titers (GMTs; ED60) and anti-RSV F IgG geometric mean antibody concentrations (GMCs; EU/mL). We present results from RSV unexposed infants (seronaïve) as assessed by serologic testing of RSV-A NAbs at baseline.


Results: Of 201 infants enrolled, 155 were seronaïve and analyzed for immunogenicity up to day 61. At days 31 and 61, RSV-A NAb GMTs were significantly higher in RSV groups compared to baseline and comparator group (Figure A). The high dose vaccine (RSV_2D) induced greater RSV-A NAbs response as compared to low dose (RSV_1D) from baseline to day 31 (4.4-fold vs 2.9-fold increase, respectively). The second RSV vaccine dose (RSV_2D) induced a further increase of >2.6-fold in RSV-A NAb GMTs at day 61. In total, an 11.8-fold increase from baseline (GMT:21.2) to day 61 (GMT:246.0) was observed. Anti-RSV-F IgG followed similar trends, with increases at day 61 of 32.9-fold (GMC:2300.0; RSV_1D) and 150.0-fold (GMC:9082.3; RSV_2D) (Figure B).

RSV

REACTOGENICITY AND SAFETY OF CHAD155-VECTORED RESPIRATORY SYNCYTIAL VIRUS (RSV) VACCINE (CHAD155-RSV) ADMINISTERED AT DIFFERENT DOSE LEVELS IN INFANTS AGED 6-7 MONTHS

E-POSTER VIEWING

E-POSTER DISCUSSION SESSION 03: VACCINES 1

Evan Anderson¹, Fernando Baquero Artigao², Francois D Boucher³, James Daniel Campbell⁴, Guido Castelli Gattinara⁵, Benhur Sirvan Cetin⁶, Javier Díez-Domingo⁷, Ener Cagri Dinleyici⁸, Saul Faust⁹, Tolga Ince¹⁰, Aleksander Krasnow¹¹, Ernest Kuchar¹², <u>Joanne M Langley</u>¹³, Kathia Luciani¹⁴, Mercedes Macias Parra¹⁵, Miguel Angel Marin Gabriel¹⁶, Federico Martinón-Torres¹⁷, Jose Manuel Merino Arribas¹⁸, Marisa Márcia Mussi-Pinhata¹⁹, Ximena Norero²⁰, Jorge Pinto²¹, Xavier Sáez-Llorens^{20,22}, Ignacio Salamanca De La Cueva²³, Leszek Szenborn²⁴, Henryk Szymanski²⁵, Pablo Rojo Conejo²⁶, Bruce Tapiero²⁷, Ilkka Seppa²⁸, Eduardo López-Medina²⁹, Mika Rämet²⁸, Jose Tomas Ramos Amador³⁰, Thanyawee Puthanakit³¹, Ilse Dieussaert³², Damien Friel³³, Antonio Gonzalez Lopez^{32,34}, Roderick Mcphee^{32,35}, Vanja Nikic³², Sonia K Stoszek³², Wayne Woo^{32,36}, Nicolas Vanhoutte³⁷

Results: Most frequently reported solicited local AEs (per infant) in RSV groups were pain (16.9-20.0%) and erythema (13.8-15.5%), but were reported generally less than after the control vaccine (42.9% and 61.9%, respectively). Solicited systemic AEs were reported in similar proportions across groups, with irritability/fussiness being the most frequent (40.9-64.3%). Fever (≥38.0°C) per dose in RSV groups (9.5-39.4%, 95% confidence interval [CI]:28.0-51.7%) appeared slightly higher than in the comparator groups (0.0-31.0%, 95% CI:17.6-47.1%) however, CIs overlap. Across all groups, 61.5-77.3% of infants experienced ≥1 unsolicited AE with comparable rates, grade and medical attendance (27.9-72.7%). SAEs reported until day 61 appear similar across groups. No safety concerns were found regarding potential ERD in the investigational groups.

Conclusions: Overall, no safety concern was detected with any ChAd155-RSV dose level/schedule.

#ESPID2021

espidmeeting.org

Times are changing

KANSER AŞILARI

European Journal of Cancer 160 (2022) 150-174

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.ejcancer.com

Review

Therapeutic vaccines for breast cancer: Has the time finally come?

Chiara Corti ^{a,b}, Pier P.M.B. Giachetti ^{a,b}, Alexander M.M. Eggermont ^{c,d}, Suzette Delaloge ^d, Giuseppe Curigliano ^{a,b,*}

KANSER AŞILARI

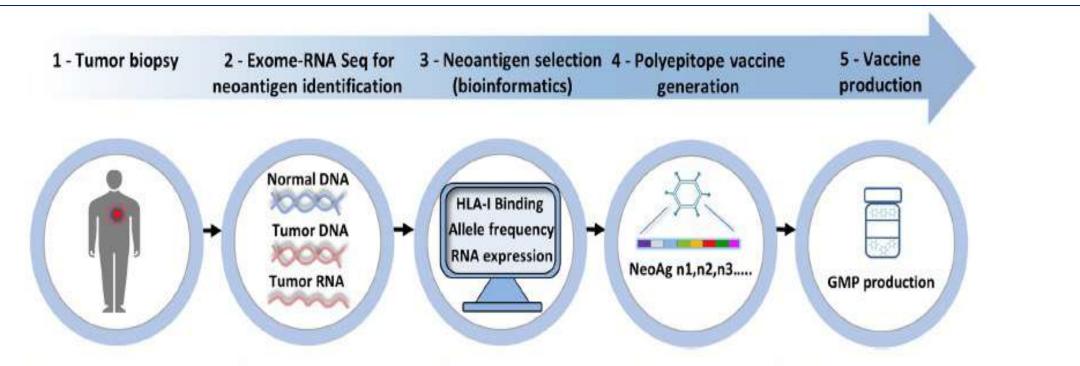
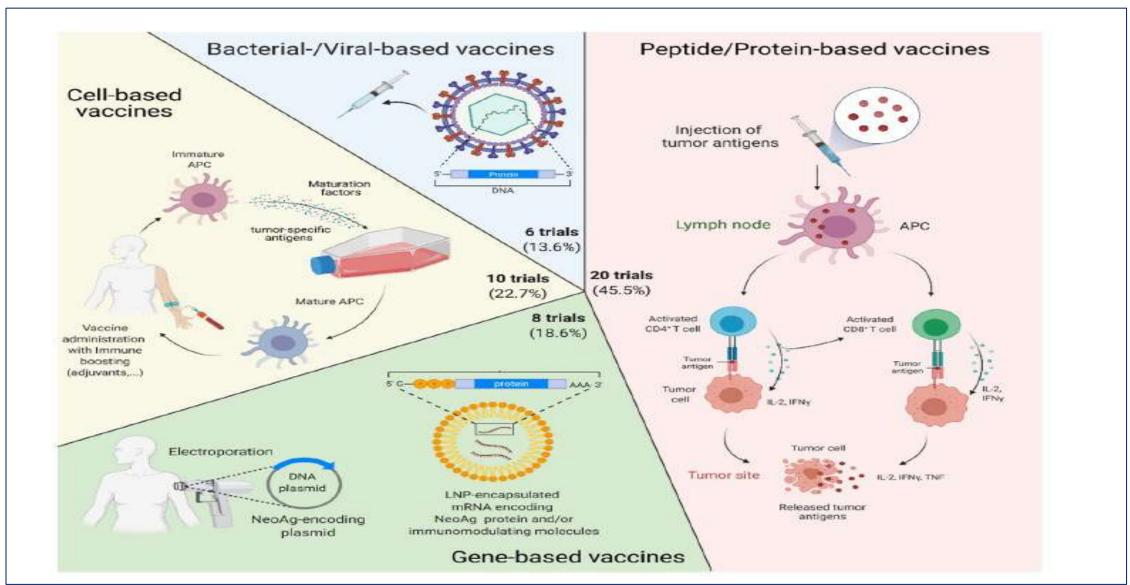
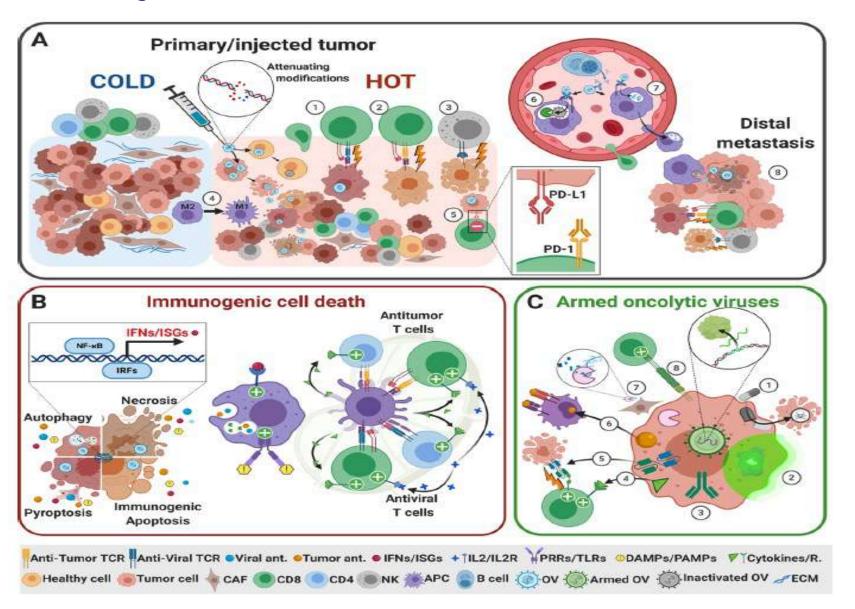



Fig. 3. Overview of the process for generation of patient-specific NHPAd based neoantigen cancer vaccine. 1. The Patient has the tumor biopsy taken. 2. Tumor DNA and RNA and healthy tissue DNA (e.g., PBMC) are sequenced in order to identify the tumor specific mutations by comparing the sequences from normal versus tumor DNA. 3. A prioritization strategy is utilized to select the best neoAg for inclusion into the vaccine, based on 3 parameters: predicted HLA-I binding, allele frequency, mRNA expression. 4. The selected neoAgs are joined head to tail, with the mutated amino acid (aa), determined by a one to three nucleotides mutation, at the center and flanked upstream and downstream by 12 wild-type aa, for a total length of 25aa for each neoAg. The corresponding gene is cloned in a NHPAd vector. 5. The vaccine is produced by a rapid (few weeks) GMP manufacturing process.



KANSER AŞILARI

KANSER AŞILARI

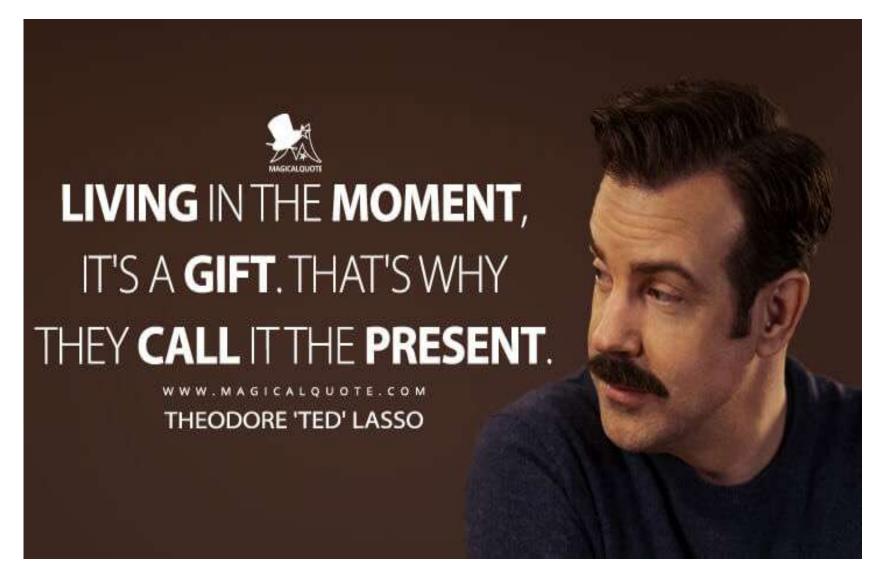
AŞILAMA: EŞİT VE ADİL DAĞITIM

NEWS → NEWS STORIES → GPEI STATEMENT ON WPV1 IN MALAWI

17/02/2023

At-risk countries, Eradication, GPEI partners, Surveillance

+ f 💆 🖾


GPEI Statement on WPV1 in Malawi

Wild poliovirus type 1 detected in Lilongwe, Malawi

17 February 2022 As a result of ongoing disease surveillance, the Global Polio Laboratory Network (GPLN) has confirmed the presence of type 1 wild poliovirus (WPV1) in a child suffering from paralysis in Tsabango, Lilongwe, Malawi. Analysis shows that the virus is genetically linked to WPV1 that was detected in Pakistan's Sindh province in October 2019.

The three-year-old girl in Malawi experienced onset of paralysis on 19 November 2021, and stool specimens were collected for testing on 26 and 27 November. Sequencing of the virus conducted in February by the National Institute for Communicable

