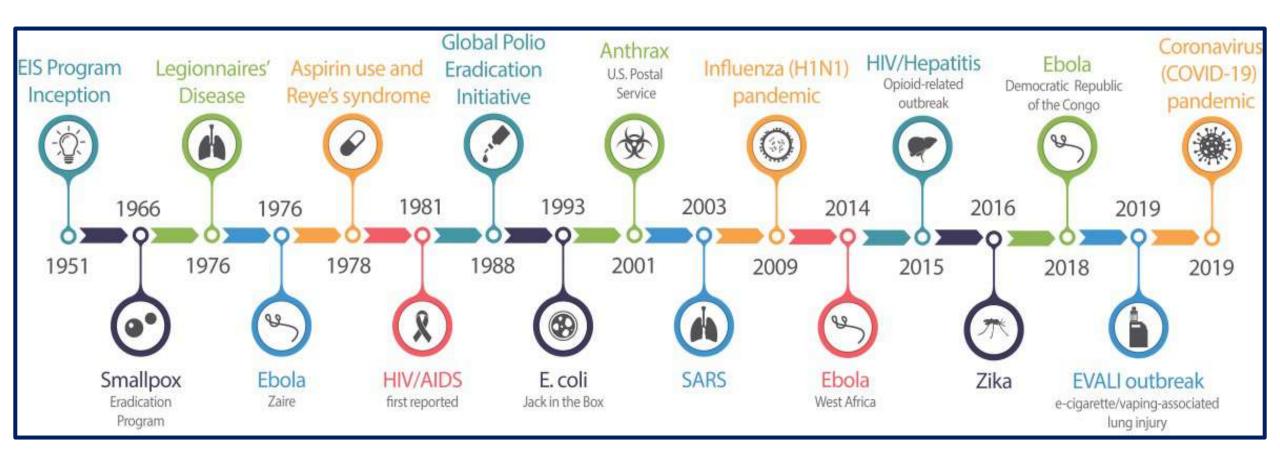


COVID-19 PANDEMISI DÖNEMINDE AŞILAMA

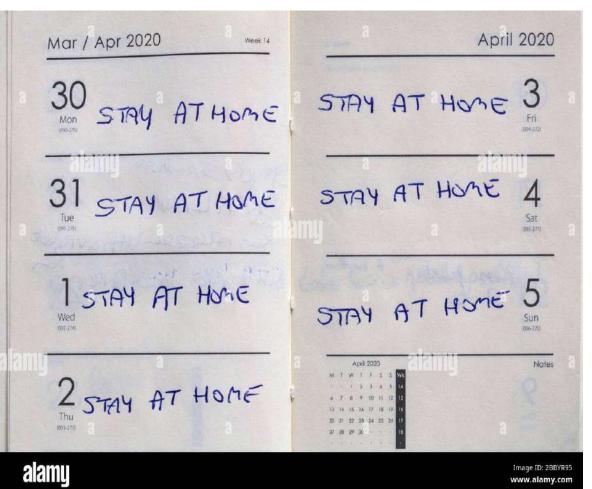
Prof.Dr. Ener Çağrı Dinleyici Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Çocuk Sağlığı ve Hastalıkları Anabilim Dalı

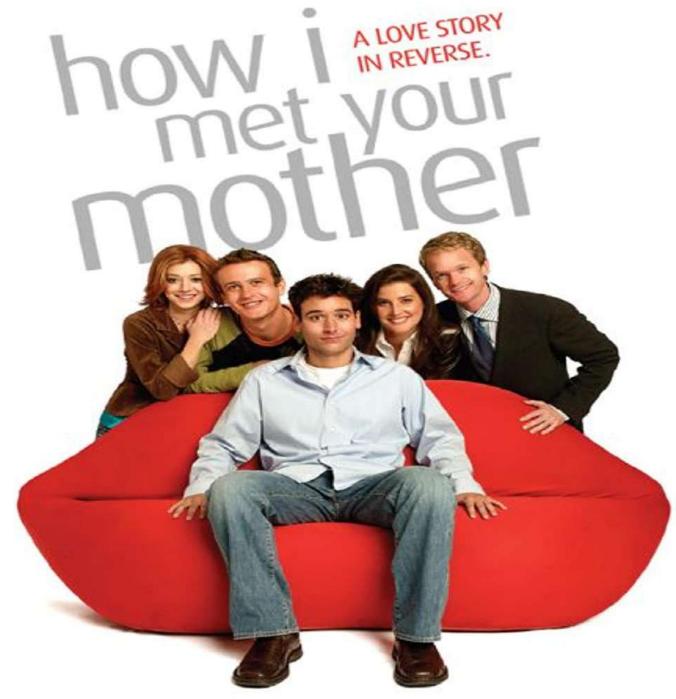
> 11 Mart 2022 KLİMİK 2022

@timbooth75



@ecdinleyici


ENFEKSİYON VE BAŞARI ÖYKÜLERİ



Many of the managers wore shorts underneath suits. Photo credit: LinkedIn/Amit Pandey Source: UGC Read more: https://www.legit.ng/people/1451351-managers-take-group-picture-with-outfits-they-used-zoom-meeting-result-hilarious/

No, you can't treat COVID-19 with garlic ... an

Selection of claims debunked by AFP Fact Check about how to prevent, treat or '

Debunked: NOT EFFECTIVE ...

FOR PREVENTION, TREATMENT, TESTING OR CURE ...

Eating garlic, onion, boiled ginger Gargling with warm salt water or vinegar

Steami facema to reus

Bitter

gourd

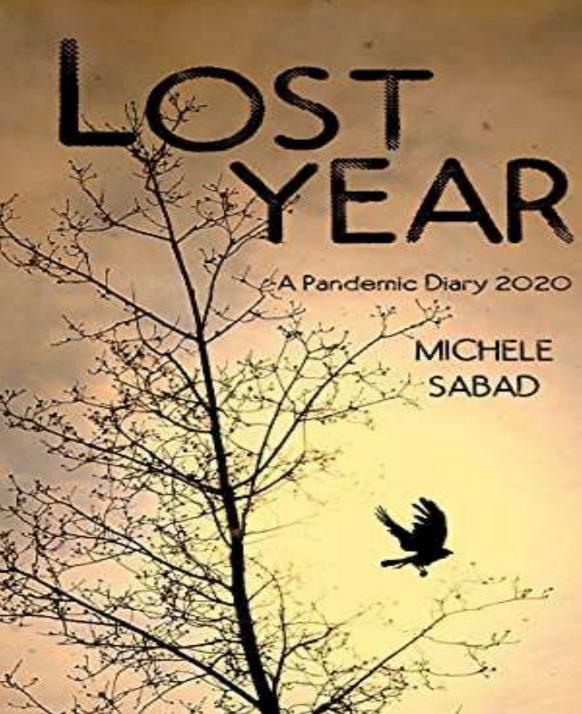
juice

White-coloured tissues/ handkerchiefs not more effective than other colours

Holdin for mo 10 seco an effe for cor infection

Water used in Islamic ablution ritual

Source: AFP Fact Check, WHO



Wet wi as prot masks

(AFP Graphics)

OBESITE MYOPI

SAĞLIK HİZMETLERİNE VE EĞİTİME ULAŞMADA SORUNLAR

GIDA GÜVENSİZLİĞİ

ÇOCUK İHMALİ VE İSTİSMARINDA ARTIŞ

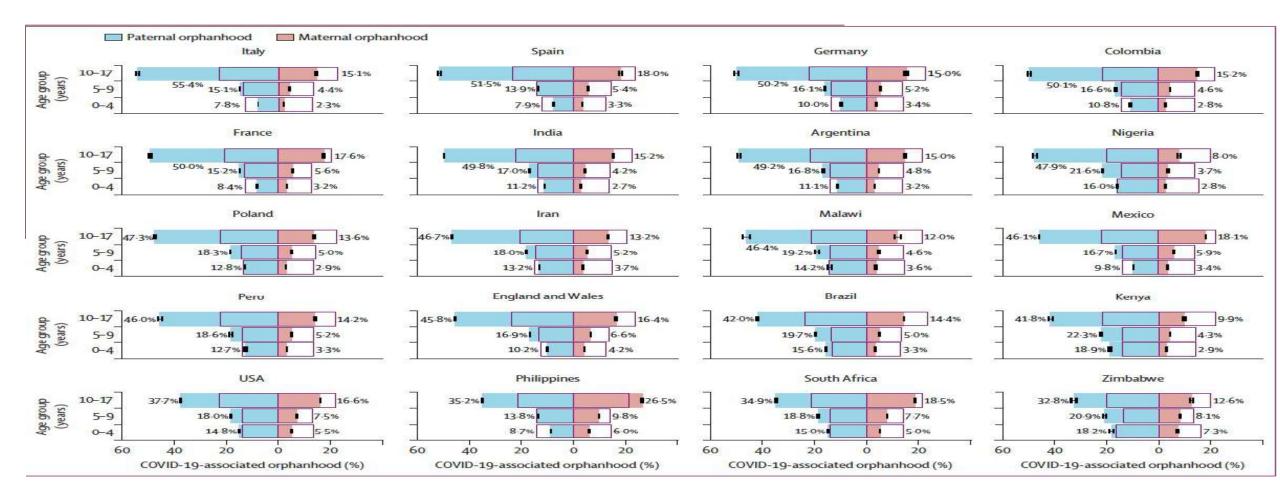
GÖÇMEN ÇOCUKLARINDA VE AİLELERİNDE ETKİLENME

KORKU, SOSYAL İZOLASYON, SOSYOEKONOMİK ETKİLENME



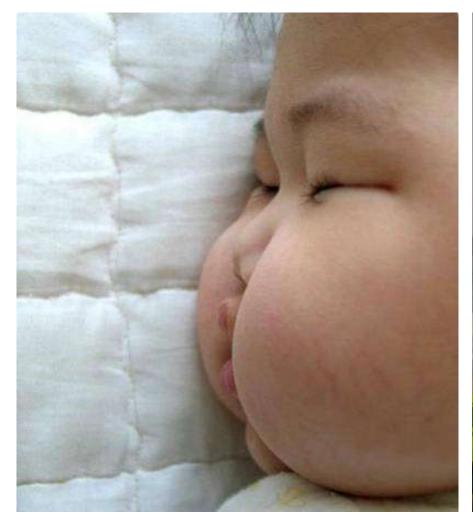
PEDIATRICS

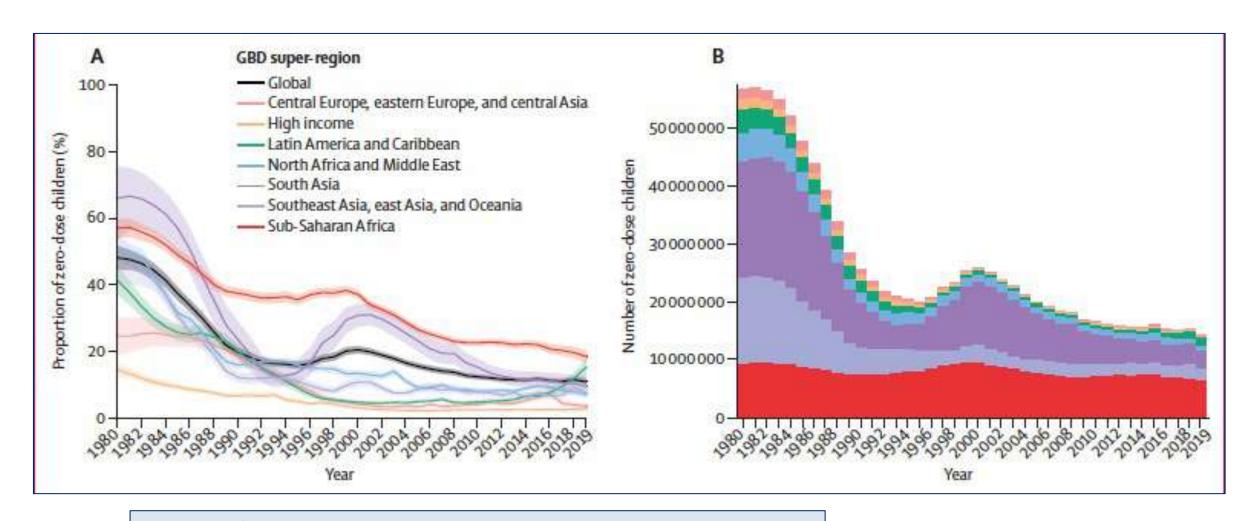
OFFICIAL JOURNAL OF THE AMERICAN ACADEMY OF PEDIATRICS


COVID-19-Associated Orphanhood and Caregiver Death in the United States

Susan D. Hillis, PhD; Alexandra Blenkinsop, PhD; Andrés Villaveces, MD, PhD; Francis B. Annor, PhD; Leandris Liburd, PhD; Greta M. Massetti, PhD; Zewditu Demissie, PhD; James A. Mercy, PhD; Charles A. Nelson, III, PhD; Lucie Cluver, PhD; Seth Flaxman, PhD; Lorraine Sherr, PhD; Christl A. Donnelly, ScD; Oliver Ratmann, PhD; H. Juliette T. Unwin, PhD

Results: We found that from April 1, 2020 through June 30, 2021, over 140,000 children in the US experienced the death of a parent or grandparent caregiver. The risk of such loss was 1.1 to 4.5 times higher among children of racial and ethnic minorities, compared to Non-Hispanic White children. The highest burden of COVID-19-associated death of parents and caregivers occurred in Southern border states for Hispanic children, Southeastern states for Black children, and in states with tribal areas for American Indian/Alaska Native populations.




ÇOCUKLUK ÇAĞI AŞILAMASI

PANDEMI ÖNCESI DÖNEMDE RUTIN AŞILAMA

HİÇ AŞILANMAMIŞ ÇOCUKLAR

AŞILAMA

RUTİN AŞILAMA

DURAKLAMA

GECİKME

RE-**ORGANIZASYON**

TAMAMEN IPTAL

FIDCT CTED, DECTDICTIONIC **SECOND STEP: EASING RESTRICTIONS**

By contrast, in countries that are easing restrictions, there potential risk outbreaks of diseases like measles, pertussis, and polio, among others

ucadiy vaccine preventable discases.

DIĞER ENFEKSİYONLARDA AZALMA

The Lancet Regional Health - Europe 6 (2021) 100103

Contents lists available at ScienceDirect

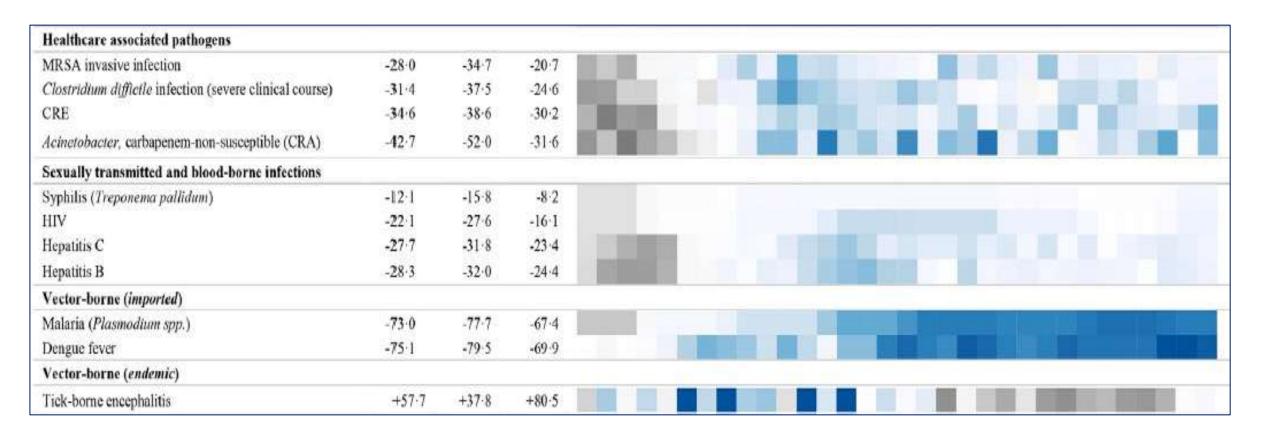
The Lancet Regional Health - Europe

journal homepage: www.elsevier.com/lanepe

Research paper

Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1–2016 – week 32–2020

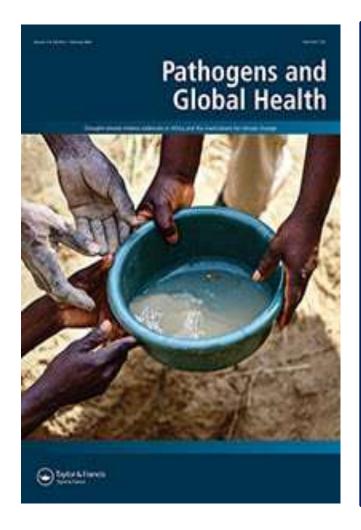
Alexander Ullrich^a, Madlen Schranz^a, Ute Rexroth^a, Osamah Hamouda^a, Lars Schaade^b, Michaela Diercke^a, T. Sonia Boender^{a,*} Robert Koch's Infectious Disease Surveillance Group



DİĞER ENFEKSİYONLARDA AZALMA

Infectious disease notification category	Δ%	95%CI		Change in case numbers by reporting week			
Respiratory				1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32			
Tuberculosis	-11.6	-16-3	-6.6				
Legionellosis	-27.8	-34-2	-20:7				
Mumps	-33:3	-42 8	-22 1				
Chickenpox	-51-5	-53-0	-50.0				
Seasonal influenza	-54-4	-54-9	-53-9				
Invasive meningococcal disease	-59.0	-70-3	-43:2				
Invasive Haemophilus influenza	-61.3	-67-4	-54-2				
Whooping cough	-63.7	-65-2	-62.2				
Measles	-85.5	-89-0	-81-0				
Gastro-intestinal							
Yersiniosis	-7 0	-13.5	0:0				
Hepatitis E	-7.0	-10-9	-3.0				
Listeriosis	-21.8	-33-5	-8 0				
Campylobacter enteritis	-22.2	-23-4	-21:0				
Hepatitis A	-36.7	-43-5	-29-1				
Giardiasis	-43.3	-47:3	-39.0				
Salmonellosis	-45.4	-47-4	-43.4				
Enterohemorrhagic Escherichia coli (EHEC) disease	-46.4	-50-9	-41.5				
Cryptosporidiosis	-52.4	-57-2	-47.0				
Norovirus gastroenteritis	-78.7	-79-2	-78.2				
Shigellosis	-82.9	-87-0	-77-6				
Rotavirus gastroenteritis	-83.3	-83-9	-82.7				

DIĞER ENFEKSİYONLARDA AZALMA



DIĞER ENFEKSİYONLARDA AZALMA

INVAZIV MENINGOKOK ENFEKSIYONLARI ITALYA

PATHOGENS AND GLOBAL HEALTH https://doi.org/10.1080/20477724.2021.1995657

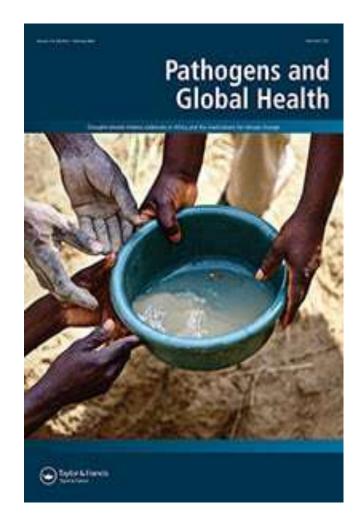
SHORT COMMUNICATION

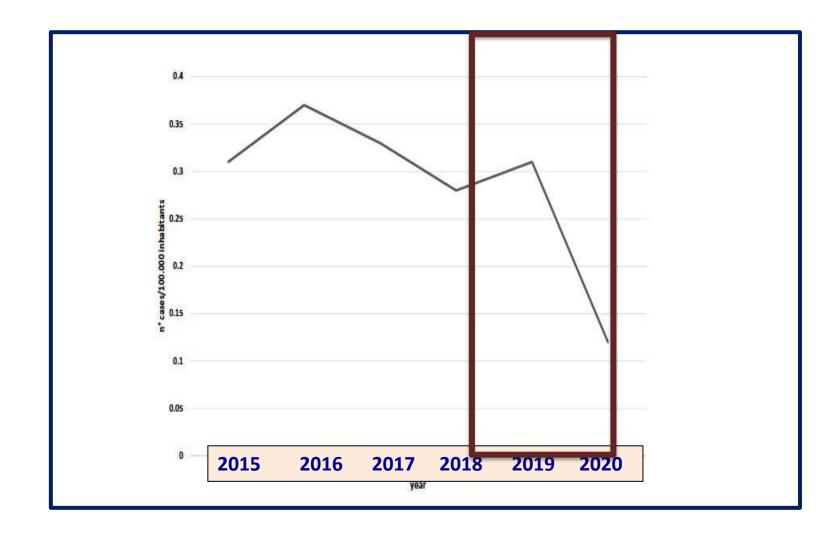
Did social distancing measures deployed for SARS-CoV-2/COVID-19 control have an impact on invasive meningococcal disease?

Paola Stefanelli^a, Cecilia Fazio^a, Paola Vacca^a, Arianna Neri^a, Luigina Ambrosio^a and Giovanni Rezza^b

^aDepartment of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ^bHealth Prevention Directorate, Ministry of Health, Rome, Italy

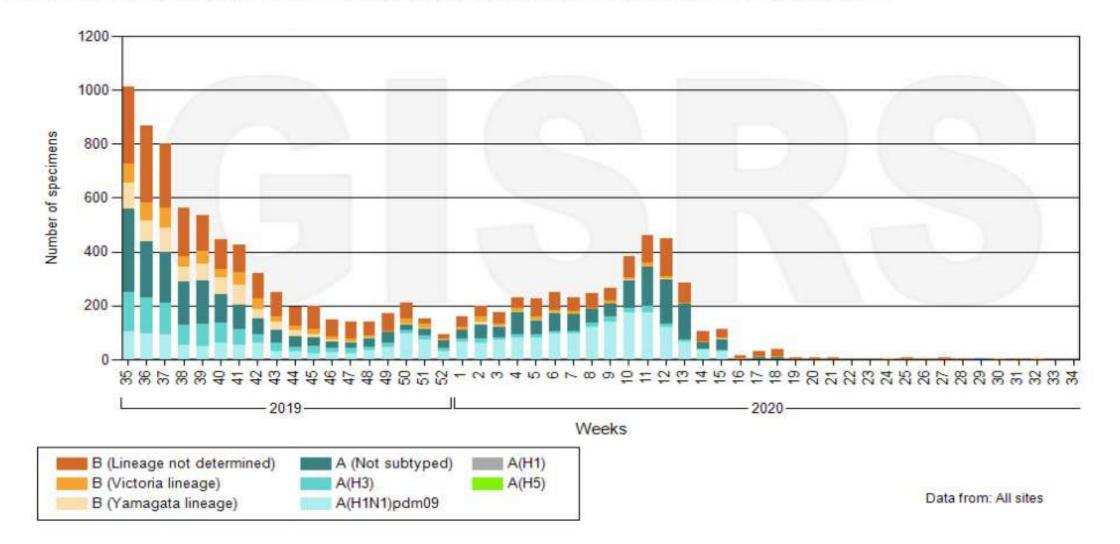
ABSTRACT


We investigated the impact of social distancing measures, used to contain or mitigate SARS-CoV-2 spread, on the transmission of invasive meningococcal disease (IMD) in Italy. To this end, the temporal correlation between the implementation of lockdown measures in 2020 and IMD incidence was evaluated. A dramatic decline of IMD incidence was observed, suggesting that the measures applied to contain SARS-CoV-2 in Italy affected other infectious diseases transmitted through direct contact and droplets, at least in the early phase of the COVID-19 pandemic.


KEYWORDS

Lockdown; social distancing; control measures; SARS-CoV -2; invasive meningococcal disease

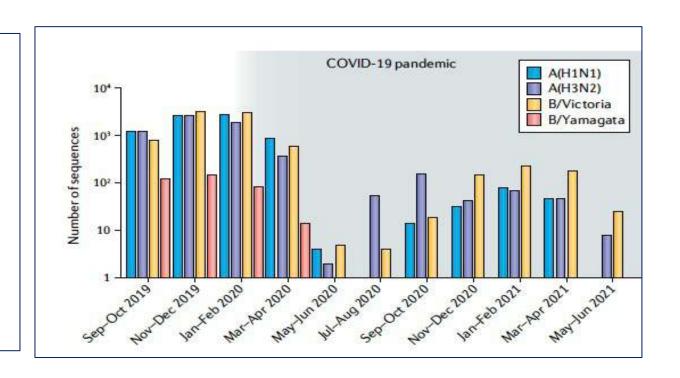
INVAZIV MENINGOKOK ENFEKSİYONLARI İTALYA



INFLUENZA

Number of specimens positive for influenza by subtype in the southern hemisphere

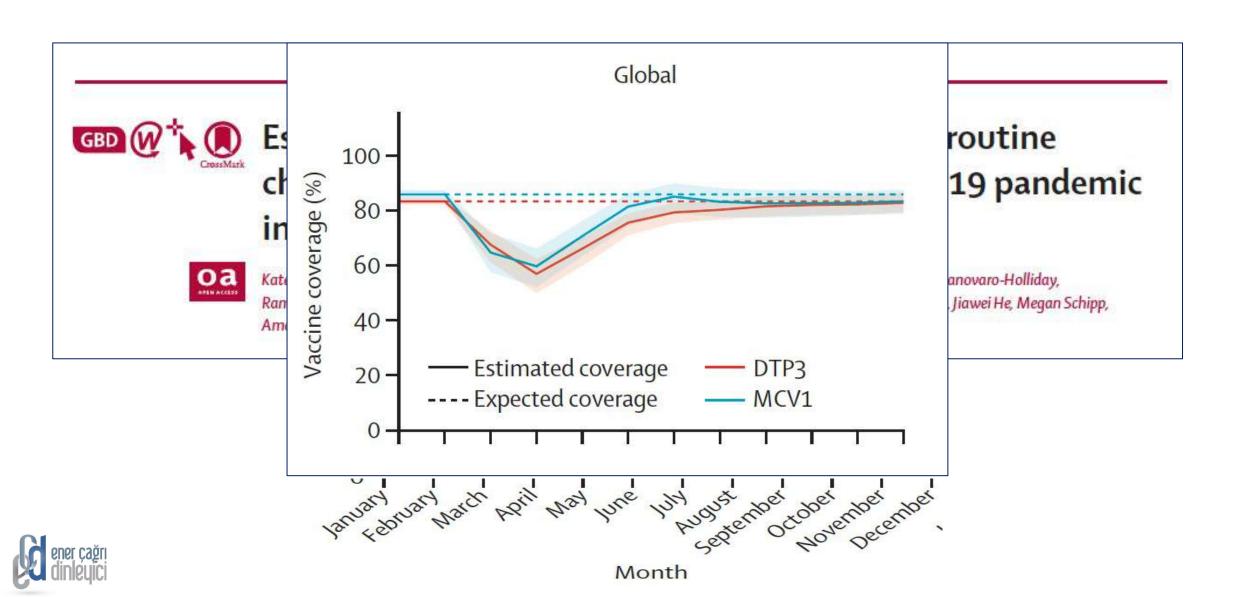
INFLUENZA

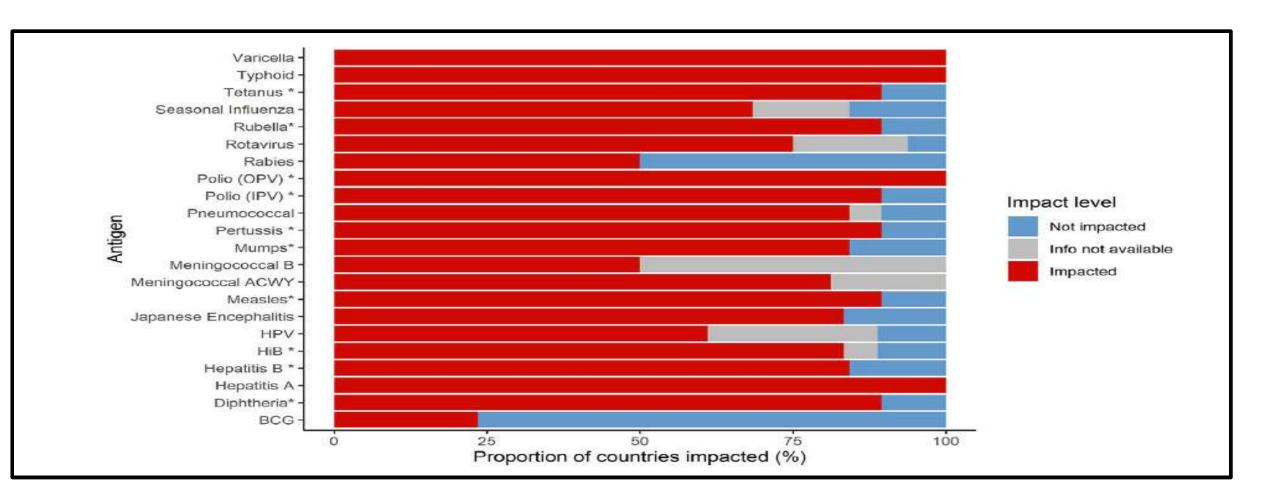

COMMENT

Influenza lineage extinction during the COVID-19 pandemic?

Marios Koutsakos 12 , Adam K. Wheatley 1 , Karen Laurie 2 , Stephen J. Kent $^{1.3}$ and Steve Rockman $^{1.2}$

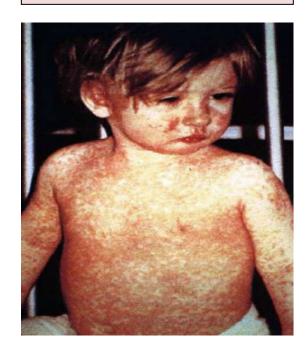
The SARS-CoV-2 pandemic has seen a notable global reduction in influenza cases of both influenza A and B viruses. In particular, the B/Yamagata lineage has not been isolated from April 2020 to August 2021, suggesting that this influenza lineage may have become extinct, which may provide opportunities for improving availability and effectiveness of influenza vaccines.




RSV

RUTİN AŞILAMA

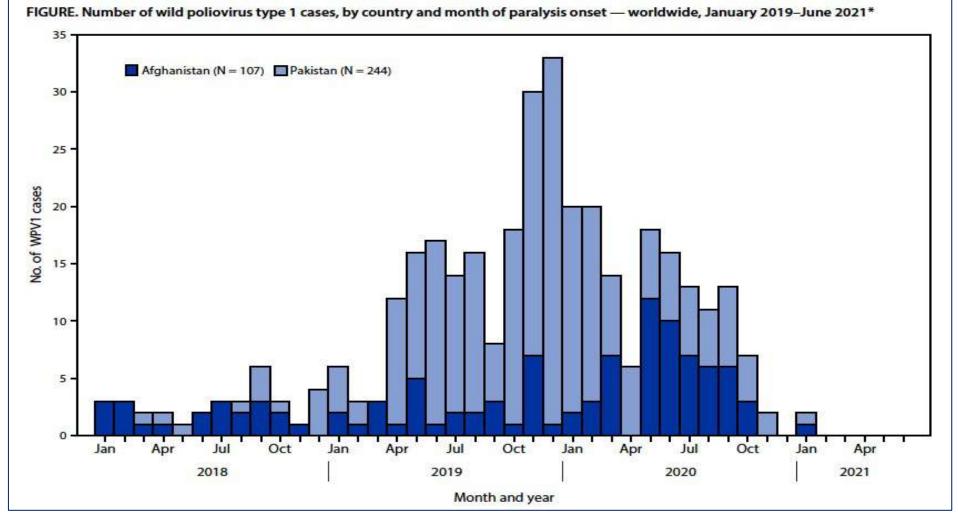
RUTİN AŞILAMA



RUTİN AŞILAMA KİTLESEL AŞI KAMPANYALARI

POLIO

KIZAMIK



RUTİN AŞILAMA KİTLESEL AŞI KAMPANYALARI

POLIO

RUTİN AŞILAMA KİTLESEL AŞI KAMPANYALARI

NEWS -

At-risk

GP

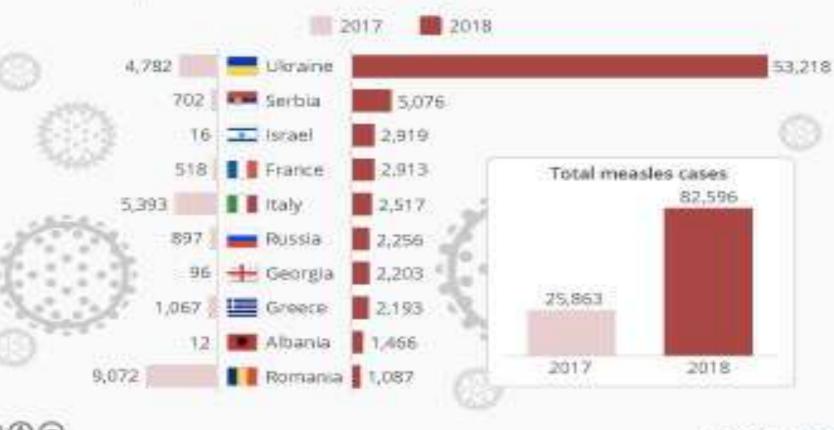
Wild

17 Fe

prese

virus

The th


testin

Disea

Europe's Measles Cases Tripled Last Year

Source: World Health Organization

Measles cases reported in the WHO European Region in 2017 & 2018

f 💟 🖂

d the

ated for

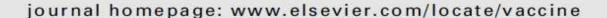
ble

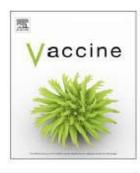
ows that the

RUTİN AŞILAMA ABD

- Overall vaccination rate for 2020 decreased 50.8-59.2
 - 59.2% (higher drop) in adolescents aged 11-13 years old.
 - 64.1% reduction for Tdap vaccine among children 11-13 years old.
 - 62.9% reduction for Hepatitis B vaccine.
 - 53.4% reduction for varicella vaccine
 - 54.7% reduction for MMR vaccine

«PANDEMIC CONTINUES TO BE A MARATHON RATHER THAN A SPRINT»

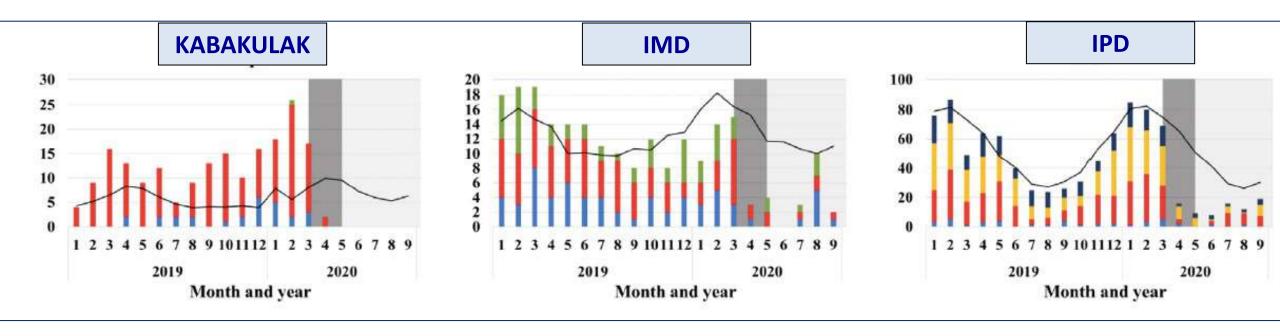

RUTİN AŞILAMA HOLLANDA


Vaccine 39 (2021) 1039-1043

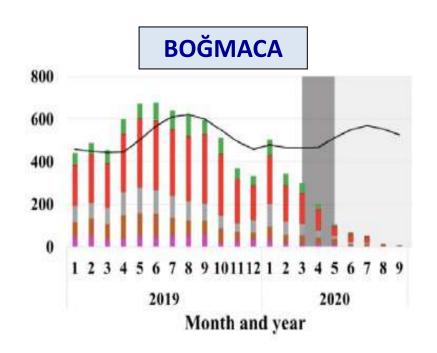
Contents lists available at ScienceDirect

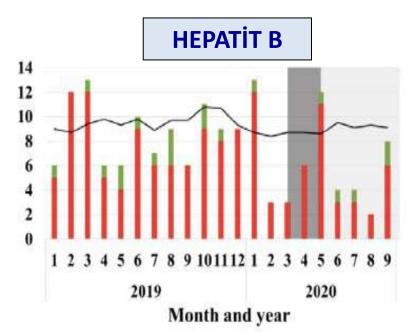
Vaccine

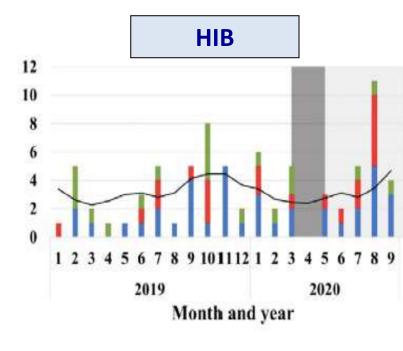
Short communication


Short term impact of the COVID-19 pandemic on incidence of vaccine preventable diseases and participation in routine infant vaccinations in the Netherlands in the period March-September 2020

Marit Middeldorp ^{a,*}, Alies van Lier ^a, Nicoline van der Maas ^a, Irene Veldhuijzen ^a, Wieke Freudenburg ^b, Nina M. van Sorge ^b, Elisabeth A.M. Sanders ^a, Mirjam J. Knol ^a, Hester E. de Melker ^a


RUTİN AŞILAMA HOLLANDA





RUTİN AŞILAMA HOLLANDA

AŞI İLE KORUNULABİLİR HASTALIK HOLLANDA

- RUTİN AŞILAMANIN DEVAM EDİLMESİ.
- 0-2 YAŞ 200.000 EBEVEYNE, AŞILARIN ÖNEMİNİ ANLATAN MEKTUP GÖNDERİLDİ.
- MART-EYLÜL MMR AŞILAMASI 2019'A GÖRE %6-14 AZALMA
- AŞILAMA KAMPANYASI SONRASINDA SADECE %1-2 AZALMA KALMIŞ.

RUTİN AŞILAMA LÜBNAN

Table 1. Witnessed decrease among private physicians in the utilization of routine immunization services between October 2019 and April 2020.

	Number	Percentage
Physicians witnessing a decrease in the utilization of routine immunization services between October 2019 and April 2020	267	77.4
Physicians witnessing a decrease in the utilization of the following vaccines between October 2019 and April 2020 ($N = 267$)		
OPV	132	49.4
IPV	186	69.7
Measles	189	70.8
DPT	195	73.0
Hepatitis B	171	64.0
MMR	189	70.8
PCV	219	82.0
Hepatitis A	213	79.8
Period with the most significant decrease rate in immunization services provision in the private sector ($N = 267$)		
October- November 2019	6	2.2
December 2019- January 2020	21	7.9
February-April 2020	234	87.6
Do not know	6	2.2

RUTIN AŞILAMA 77.4% ↓

RUTİN AŞILAMA ŞUBAT-NİSAN 87.6% ↓

HEPATITIS A 79.8%↓
HEPATITIS B 64.0 ↓

ÖZEL AŞILAMA

RUTİN AŞILAMA LÜBNAN

Table 2. Percent decrease rate in the utilization of routine vaccination in the private sector between October 2019 and April 2020.

	Estimated Percent Decrease Rate
Average overall estimated percent decrease rate in the utilization of routine immunization services in the private sector between October 2019 and April 2020	46.9%
Average estimated percent decrease rates in the utilization of the following vaccines in the private sector between October 2019 and April 2020 (N = 267)	
OPV	57.5%
Hepatitis A	57.2%
Measles	53.3%
PCV	53.3%
MMR	49.9%
Hepatitis B	49.1%
IPV	48.5%
DTP	46.3%

OPV 57.5% ↓

HEPATITIS A 57.2% ↓

KIZAMIK 53.5% ↓

MMR 49.9% ↓

HEPATIT B 49.1% ↓

IPV 48.5% ↓

DTP 46.3% ↓

ÖZEL SEKTÖR

Mansour Z et al. Plos One 2021

RUTİN AŞILAMA SİNGAPUR

Table 1

Number of vaccines given for January to March 2020 compared to the baseline in January to March 2019, and for April 2020 compared to the baseline in April 2019, with the estimates of the percentage change in number of vaccines between time periods, at each type of healthcare facility.

Vaccine	Place	Number of vaccines Jan - March 2019	Number of vaccines Jan- March 2020	% Difference January - March 2019-2020 (95% confidence interval)	Number of vaccines April 2019	Number of vaccines April 2020	% Difference April 2019- 2020 (95% confidence interval)
MMR	Polyclinics	3634	3436	-5.5 (-6.2 to -4.8)	1283	954	-25.6 (-28.1 to -23.3)
IVIIVIN	Hospital	364	344	-5.5 (-8.3 to -3.6)	157	67	-57.3 (-65.0 to -50.0)
MMRV	Private clinics	393	188	-52.2 (-57.1 to -47.2)	121	32	-73.6 (-81.0 to -65.1)
PENTA	Polyclinics	7015	6855	-2.3 (-2.7 to -2.0)	2367	2123	-10.3 (-11.5, to -9.1)
	Hospital	636	776	22.0 (19.0 to 25.4)	246	245	-0.4 (-2.3 to -0.1)
HEXA	Private clinics	375	317	-15.5 (-19.5 to -12.2)	136	71	-47.8 (-56.1 to -40.0)
	Polyclinics	5087	4977	-2.2 (-2.6 to -1.8)	1735	1596	-8.0 (-9.4 to -6.8)
	Hospital	545	593	8.8 (6.7 to 11.5)	194	169	-12.9 (-18.3 to -8.9)
PCV	Private clinics	269	194	-27.9 (-33.5 to -22.9)	87	28	-67.8 (-77.0 to -57.4)

NO MEASLES INCREASE (YET)
FACE MASK, SOCIAL DISTANCING, CLOSING BORDER

RUTİN AŞILAMA FRANSA

	Per	nta/hexaval	ent vaccine ^a		PCV13 v	accine		Men-C-C	vaccine		MMR v	accine
	Observed Expected		ed Relative difference	Observed	Expected	Relative difference	Observed	Expected	Relative difference	Observed	Expected	Relative difference
	n	n	% [95% CI]	n	n	% [95% CI]	n	n	% [95% CI]	n	n	% [95% CI]
Pre-lockdown Feb 17-March 15	112,716	114,213	-1.3 [-1.9; -0.7]	112,990	114,698	-1.5 [-2.1; -0.9]	60,113	61,138	-1.7 [-2.5; -0.9]	100,067	107,056	-6.5 [-7.1; -5.9]
First lockdown	195,636	207,387	-5.7 [-6.1; -5.2]	196,234	208,334	-5.8 [-6.2; -5.4]	101,234	113,622	-10.9 [-11.5; -10.4]	156,637	209,409	-25.2 [-25.6; -24.8]
March 16-April 12	95,667	109,233	-12.4 [-13; -11,9]	95,904	109,706	-12.6 [-13.1; -12]	46,861	59,301	-21 [-21.7; -20.3]	65,969	111,613	-40.9 [-41.3; -40.4]
April 13-May 10	99,969	98,154	1.8 [1.2;2.5]	100,330	98,628	1.7 [1.1;2.4]	54,373	54,321	0.1 [-0.7;0.9]	90,668	97,796	-7.3 [-7.9; -6.7]
Inter-lockdown	614,658	636,199	-3.4 [-3.6; -3.1]	615,340	638,407	-3.6 [-3.9; -3.4]	317,816	322,104	-1.3 [-1.7; -1]	642,213	671,009	-4.3 [-4.5; -4.1]
May 11-June 7	97,379	104,694	-7 [-7.6; -6.4]	97,470	105,015	-7.2 [-7.8; -6.6]	54,696	56,787	-3.7 [-4.5; -2.9]	107,753	111,065	-3 [-3.6; -2.4]
June 8-July 5	104,431	102,558	1.8 [1.2;2.4]	104,495	102,984	1.5 [0.9;2.1]	57,081	56,690	0.7 [-0.1;1.5]	116,573	114,056	2.2 [1.6;2.8]
July 6-Aug 2	97,068	99,605	-2.5 [-3.2; -1.9]	97,131	99,798	-2.7 [-3.3; -2.1]	49,190	48,202	2.1 [1.2;3]	93.021	97,600	-4.7 [-5.3; -4 .1]
Aug 3-30	93,697	94,623	-1 [-1.6; -0.3]	93,792	94,975	-1.2 [-1.9; -0.6]	45,707	45,059	1.4 [0.5;2.4]	85,327	87,904	-2.9 [-3.6; -2.3]
Aug 31-Sept 27	115,914	122,602	-5.5 [-6; -4.9]	116,063	122,996	-5.6 [-6.2; -5.1]	56,264	58,878	-4.4 [-5.2; -3.6]	123,470	137,823	-10.4 [-10.9; -9.9]
Sept 28-Oct 25	106,169	112,117	-5.3 [-5.9; -4.7]	106,389	112,639	-5.5 [-6.1; -5]	54,878	56,488	-2.8 [-3.7; -2]	116,069	122,561	-5.3 [-5.8; -4.8]
Second lockdown	222,409	228,968	-2.9 [-3.3; -2.5]	222,745	230,088	-3.2 [-3.6; -2.8]	116,474	115,191	1.1 [0.5;1.7]	223,193	226,520	-1.5 [-1.9; -1.1]
Oct 26-Nov 23	110,950	113,126	-1.9 [-2.5; -1.3]	110,996	113,754	-2.4 [-3; -1.8]	56,321	55,058	2.3 [1.5;3.1]	111,199	112,530	-1.2 [-1.8; -0.6]
Nov 24-Dec 20	111,459	115,842	-3.8 [-4.3; -3.2]	111,749	116,334	-3.9 [-4.5; -3.4]	60,153	60,133	0 [-0.8;0.8]	111,994	113,990	-1.8 [-2.3; -1.2]
Since first lockdown March16-Dec 20	1,032,703	1,072,554	-3.7 [-3.9; -3.5]	1,034,319	1,076,829	-3.9 [-4.1; -3.8]	535,524	550,917	-2.8 [-3.1; -2.5]	1,022,043	1,106,936	-7.7 [-7.8; -7.5]

RUTİN AŞILAMA BREZİLYA

JOURNAL
OF MEDICAL
MICROBIOLOGY

Effect of COVID-19 of

Marcelle Moura Silveira^{1,*}, Neida Luc

Region	Vaccine	Vaccination coverage rates (%) by year								
	á	2015	2016	2017	2018	2019	2020			
North	MCC	87.1	81.8	78.5	74.1	84.2	64.4			
	PCV10	75.0	85.8	84.2	86.5	88.3	68.6			
	BCG	100.0	92.0	92.4	94.9	91.0	71.2			
	DTaP	27.8	28.3	34.9	58.4	65.5	45.9			
Northeast	MCC	97.4	88.6	85.6	90.4	86.3	67.4			
c	PCV10	93.2	92.1	90.4	97.3	88.5	70.7			
	BCG	100.0	94.3	97.2	100.0	85.3	63.2			
	DTaP	44.1	36.2	42.0	61.7	63.8	40.8			
Midwest	MCC	85.0	100.0	78.5	83.3	88.0	75.0			
	PCV10	92.7	100.0	91.1	94.8	90.0	80.1			
	BCG	100.0	100.0	97.5	100.0	93.7	73.5			
	DTaP	41.8	45.7	44.1	61.8	69.0	50.1			
Southeast	MCC	100.0	93.1	89.6	90.7	86.6	70.7			
	PCV10	99.0	96.9	95.1	97.0	88.1	72.8			
	BCG	100.0	95.4	100.0	100.0	84.4	62.7			
	DTaP	53.7	32.3	43.4	57.6	59.0	36.9			
South	MCC	100.0	94.5	92.1	88.6	93.4	78.9			
	PCV10	98.4	96.7	93.7	93.1	92.7	80.6			
	BCG	100.0	96.0	92.3	94.1	88.0	76.0			
	DTaP	35.6	35.0	45.0	65.2	69.2	47.2			

RUTİN AŞILAMA PERU

Peru

March: Cancellation of outpatient care (immunization, prenatal, obstetric, contraception, pediatric, adult, nutrition), health promotion activities, and home visits (for example, to administer meningococcal vaccines to people over 60 years of age in peri-urban areas of Lima due to lack of personal protective equipment). Maintenance of emergency services. Maintenance of response services to family and gender violence, with a specific line for violence against children, with a communication campaign to alert the population about these services.

UNDP LAC C19 PDS No. 19

Challenges posed by the COVID-19 pandemic in the health of women, children, and adolescents in Latin America and the Caribbean

ERİŞKİN AŞILAMA

RUTİN AŞILAMA KANADA

Vaccine 39 (2021) 5532-5537

Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Continuity of routine immunization programs in Canada during the COVID-19 pandemic

Hannah Sell a,b, Ali Assi b, S. Michelle Driedger c, Ève Dubé d, Arnaud Gagneur e, Samantha B. Meyer f, Joan Robinson g, Manish Sadarangani h, Matthew Tunis i, Shannon E. MacDonald b,*

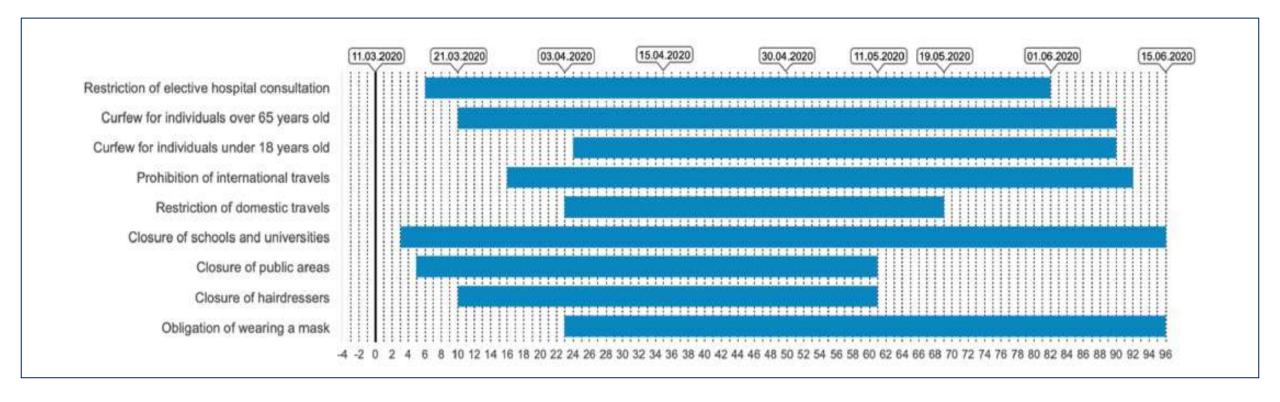
Conclusions: Canadian routine immunization programs faced some disruptions due to the COVID-19 pandemic, particularly the school, adult, and older adult programs. Further research is needed to determine the measurable impact of the pandemic on routine vaccine coverage levels.

ERİŞKİN AŞILAMA

RUTİN AŞILAMA TÜRKİYE

HUMAN VACCINES & IMMUNOTHERAPEUTICS https://doi.org/10.1080/21645515.2021.1923345

RESEARCH PAPER



Alteration in vaccination rates and an evaluation of physicians' perceptions of the possible impact of the SARS-CoV-2 pandemic on childhood vaccinations in Ankara, Turkey

Ateş Kara^a, Sare İlbay^a, Osman Topaç^b, Elif Ayla Arabulan^b, Hasan Tezer^c, Nilüfer Tavukçu^b, and Çiğdem Şimşek^b

RUTİN AŞILAMA TÜRKİYE

RUTİN AŞILAMA TÜRKİYE

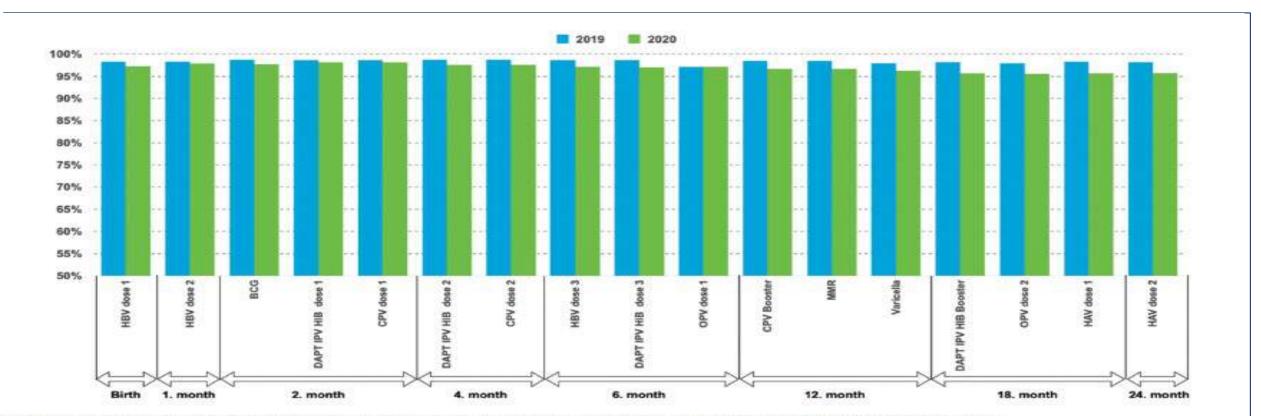


Figure 2. Mean vaccination ratios of children under the age of 24 months during March, April, May 2019 and 2020 in Ankara, Turkey.

RUTİN AŞILAMA

T.C. Sağlık Bakanlığı Ulusal Çocukluk Dönemi Aşılama Takvimi (2020)

	Doğumda	1.ayın sonu	2.ayın sonu	4.ayın sonu	6.ayın sonu	12.ayın sonu	18.ayın sonu	24.ayın sonu	48.ay³	13 yaş
Нер-В		11		,	Ш					
BCG			- 1							
КРА	-		1			R				
DaBT-İPA-Hib	5	1	NU I	11	III		R	2 2		
OPA							Ш			
Suçiçeği ¹										
KKK									Ш	
Hep-A ²	ė daras dara						T I	11		
DaBT-İPA									R	
Td	ė.									R

¹1 Ocak 2012 ve sonrasında doğan çocuklara uygulanacaktır.

³1 Temmuz 2016 tarihinde doğanlardan başlamak üzere 48.ayına girmiş olan tüm çocuklara uygulanacaktır. 1 Temmuz 2016 tarihinden önce doğmuş ve halen ilköğretime başlamamış olan çocukların KKK ikinci dozu ve DaBT-İPA aşısı ise 2020-2021, 2021-2022 ve 2022-2023 eğitim ve öğretim dönemlerinde okul aşılamaları şeklinde uygulanacaktır.

²1 Mart 2011 ve sonrasında doğan çocuklara uygulanacaktır.

RUTİN AŞILAMA ÖNERİLER

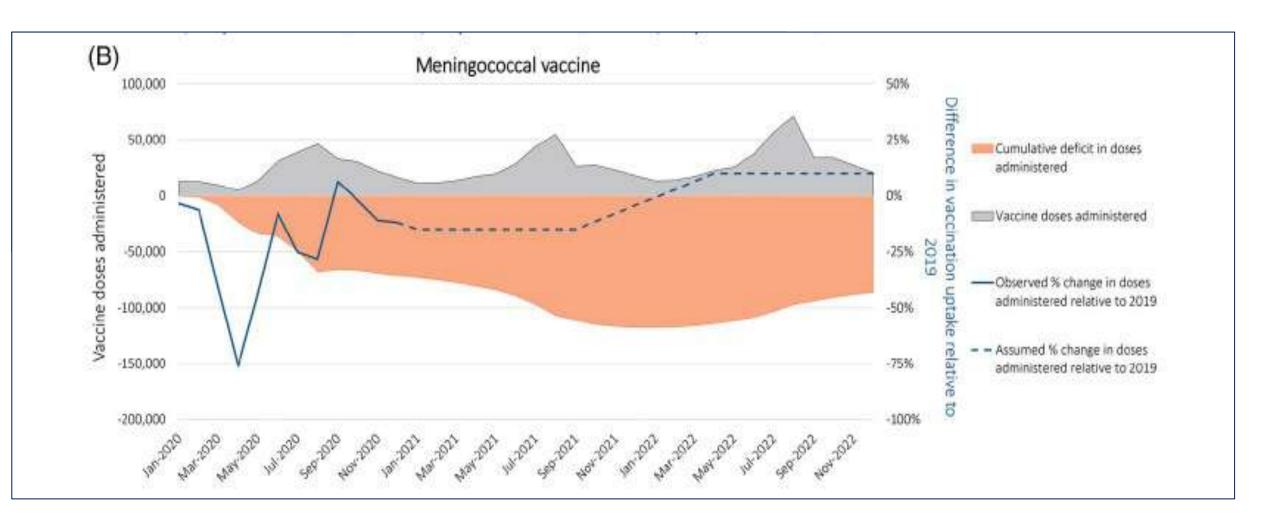
HUMAN VACCINES & IMMUNOTHERAPEUTICS 2021, VOL. 17, NO. 2, 400–407 https://doi.org/10.1080/21645515.2020.1804776

REVIEW

Vaccines and routine immunization strategies during the COVID-19 pandemic

Ener Cagri Dinleyici (1)a, Ray Borrowb, Marco Aurélio Palazzi Safadi (1)c, Pierre van Dammed, and Flor M. Munoze

^aDepartment of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey; ^bVaccine Evaluation Unit, Public Health England, Manchester, UK; ^cDepartment of Pediatrics, Santa Casa De São Paulo, School of Pediatrics, São Paulo, Brazil; ^dCentre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; ^eDepartments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA


RUTİN AŞILAMA ÖNERİLER

RUTİN AŞILAMA GELECEK

RUTİN AŞILAMA GELECEK

Infectious Diseases Now 51 (2021) 418-423

Disponible en ligne sur

ScienceDirect www.sciencedirect.com Elsevier Masson France

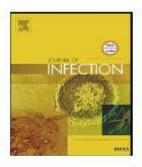
EMconculto

4. Conclusions


Review

Pediatric Infectious Disease Group immune debt of the COVID-19 parthe immunity gap?

Robert Cohen a,b,c,d,e, Marion Ashman a,f, M François Angoulvant e,i,j, Corinne Levy a,b,c,c Nicole Guiso I, Emmanuel Grimprel e,m Low viral and bacterial exposures due to NPIs imposed by the COVID-19 pandemic raise concerns as we may witness strong pediatric epidemic rebounds once personal protection measures are lifted. In addition, the decrease in vaccination coverage and the potential increased number of cases of vaccine preventable diseases are of concern. This should lead to the implementation of reinforced catch-up vaccination programs. The French vaccination schedule does not include vaccines against rotavirus, varicella, and Neisseria meningitidis serogroup B and ACYW; France could thus be more vulnerable to some of these epidemic rebounds. This should lead to advocacy for the expansion of the French vaccination schedule. Finally, for diseases for which there is no vaccine, rapid screening, timely re-enforcement of hygiene measures, and adaptation of healthcare systems should be implemented.


RUTİN AŞILAMA GELECEK

Contents lists available at ScienceDirect

Journal of Infection

journal homepage: www.elsevier.com/locate/jinf

Review

Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review

Mark R. Alderson¹, Peter D. Arkwright², Xilian Bai³, Steve Black⁴, Ray Borrow^{3,*}, Dominique A. Caugant⁵, Ener Cagri Dinleyici⁶, Lee H. Harrison⁷, Jay Lucidarme³, Lucy A. McNamara⁸, Susan Meiring⁹, Marco A.P. Sáfadi¹⁰, Zhujun Shao¹¹, David S. Stephens¹², Muhamed-Kheir Taha¹³, Julio Vazquez¹⁴, Bingqing Zhu¹¹, GMI collaborators¹⁵

RUTİN AŞILAMA GELECEK

THE JOURNAL OF PEDIATRICS . www.jpeds.com

Volume 230

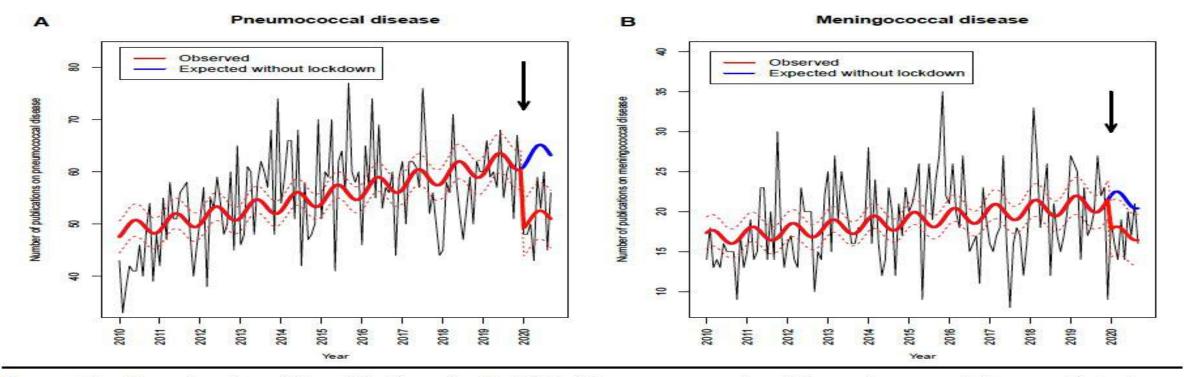
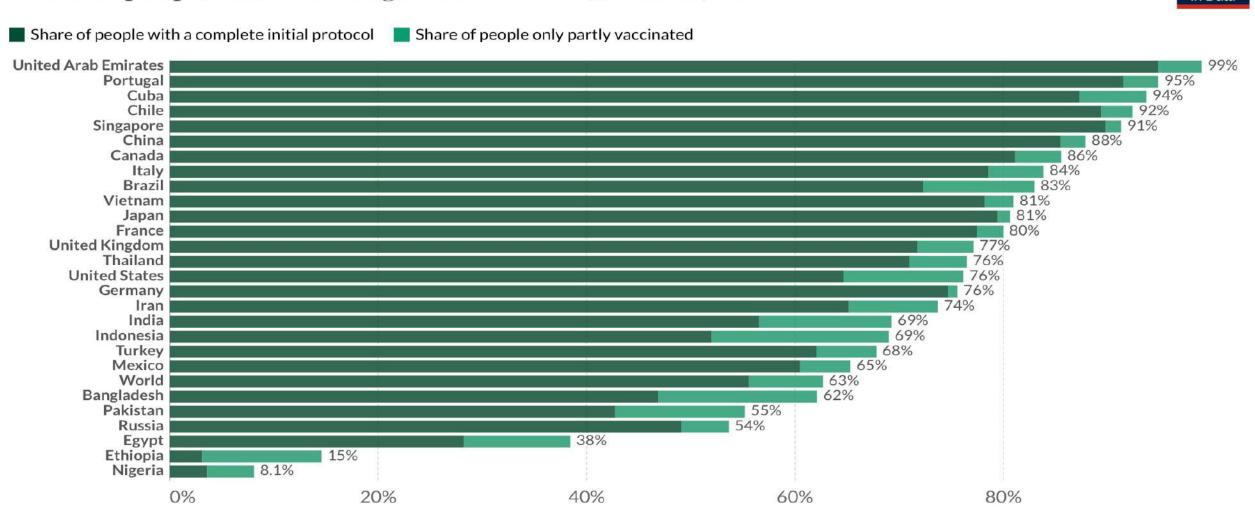


Figure. The dynamics of monthly publication rates in 2020 of **A**, pneumococcal and **B**, meningococcal disease articles in PubMed by interrupted time–series analysis with quasi-Poisson regression models, accounting for pre-existing secular trend and seasonality.



COVID-19 AŞILAMASI

EŞİT VE ADİL DAĞİTIM

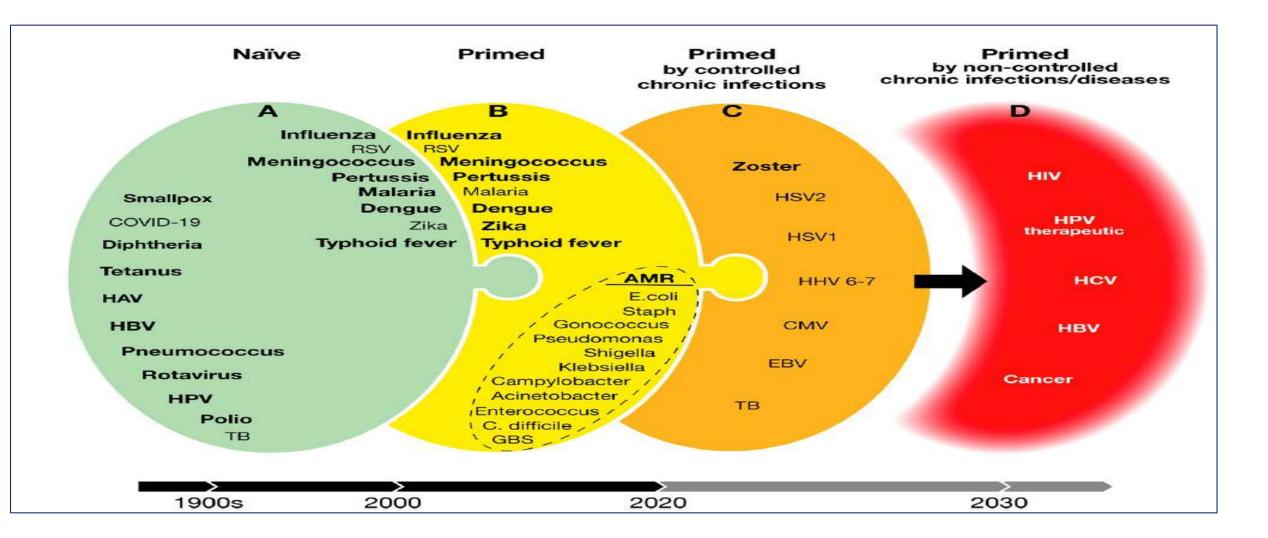
Share of people vaccinated against COVID-19, Feb 26, 2022

COVID-19 AŞILAMASI

	Incentive Type								
	Guaranteed cash payment	Guaranteed non- cash reward	Lottery with cash prize	Lottery with non- cash prize					
Example	\$25 payment	T-shirt	Chance to win \$1 million	Chance to win a truck					
Principles									
Receipt is certain	•	•	0	0					
Delivered immediately	•	•	0	0					
Valued by recipient	•	0	•	0					
Likely impact	•	0	0	0					

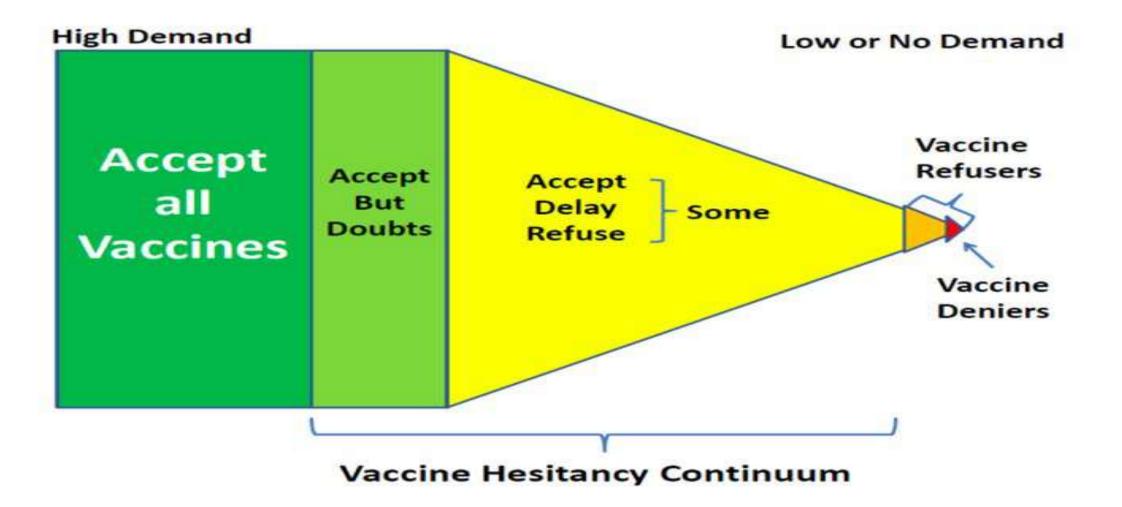
Table 1: Behavioral principles for effective vaccination incentives.

• = Stronger if program is implemented well; ● = Moderate; ○ = Weaker.


Incentives for COVID-19 vaccination

YENİ COVID-19 AŞILARI

COVID-19 VACCINES IN DEVELOPMENT 194 vaccines 44 vaccines 40 vaccines 10 vaccines 42 vaccines 23 vaccines are being explored in are undergoing safety tests in are being tested in are in large international trials to are currently being offered are being monitored in the wider lab experiments and animals healthy young individuals broader groups of people test their impact on COVID-19 to the general population population after being approved PRE-CLINICAL IN USE 🕢 PHASE 4 PHASE 1 PHASE 2 PHASE 3 Bacterial antigen-spore Protein-based Whole virus Abandoned expression vector Nucleic acid Viral vector



YENİ AŞILAR

AŞI KARARSIZLIĞI/AŞI REDDİ

COVID-19 PANDEMISI MITLER...

MYTH

The ingredients in COVID-19 vaccines are dangerous

FACT

- "Nearly all the ingredients in COVID-19 vaccines are also ingredients in many foods

 fats, sugars, and salts."
- "COVID-19 vaccines do NOT contain ingredients like preservatives, tissues (like aborted fetal cells), antibiotics, food proteins, medicines, latex, or metals."

SOURCE CDC U.S. Centers for Disease Control and Prevention, "Myths and Facts about COVID-19 Vaccines"

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/facts.html Updated by CDC Dec. 15, 2021. Accessed by ACG Jan. 20, 2022.

MYTH

COVID-19 vaccines contain microchips

FACT

- "COVID-19 vaccines do not contain microchips. Vaccines are developed to fight against disease and are not administered to track your movement."
- "Vaccines work by stimulating your immune system to produce antibodies, exactly
 like it would if you were exposed to the disease. After getting vaccinated, you
 develop immunity to that disease, without having to get the disease first."

SOURCE CDC U.S. Centers for Disease Control and Prevention, "Myths and Facts about COVID-19 Vaccines"

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/facts.html Updated by CDC Dec. 15, 2021. Accessed by ACG Jan. 20, 2022.

COVID-19 PANDEMISI MITLER...

MYTH

Natural immunity from the actual infection is better than immunity from the COVID-19 vaccination

FACT

- "Getting a COVID-19 vaccination is a safer and more dependable way to build immunity to COVID-19 than getting sick with COVID-19."
- "Getting a COVID-19 vaccination is also a safer way to build protection than getting sick with COVID-19. COVID-19 vaccination helps protect you by creating an antibody response without you having to experience sickness. Getting vaccinated yourself may also protect people around you, particularly people at increased risk for severe illness from COVID-19."

SOURCE CDC U.S. Centers for Disease Control and Prevention, "Myths and Facts about COVID-19 Vaccines"

MYTH

Receiving a COVID-19 vaccine can make me magnetic

FACT

- "Receiving a COVID-19 vaccine will not make you magnetic, including at the site of vaccination which is usually your arm."
- "COVID-19 vaccines do not contain ingredients that can produce an electromagnetic field at the site of your injection. All COVID-19 vaccines are free from metals."

SOURCE CDC U.S. Centers for Disease Control and Prevention, "Myths and Facts about COVID-19 Vaccines"


https://www.cdc.gov/coronavirus/2019-ncov/vaccines/facts.html

COVID-19 PANDEMISI MITLER...

MYTH

COVID-19 vaccines can alter my DNA

FACT

- "COVID-19 vaccines do not change or interact with your DNA in any way."
- "COVID-19 vaccines work by delivering instructions (genetic material) to our cells to start building protection against the virus that causes COVID-19."
- "After the body produces an immune response, it discards all the vaccine ingredients just as it would discard any information that cells no longer need. This process is a part of normal body functioning."

SOURCE CDC U.S. Centers for Disease Control and Prevention, "Myths and Facts about COVID-19 Vaccines"

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/facts.html Updated by CDC Dec. 15, 2021. Accessed by ACG Jan. 20, 2022.

MYTH

COVID-19 vaccines will affect my fertility

FACT

- "Currently no evidence shows that any vaccines, including COVID-19 vaccines, cause fertility problems (problems trying to get pregnant) in women or men."
- "COVID-19 vaccination is recommended for people who are pregnant, trying to get pregnant now, or might become pregnant in the future, as well as their partners."

SOURCE CDC U.S. Centers for Disease Control and Prevention, "Myths and Facts about COVID-19 Vaccines"

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/facts.html Updated by CDC Dec. 15, 2021. Accessed by ACG Jan. 20, 2022.

AŞILAMADA EBEVEYN-ERİŞKİN

#GAMEOFTHRONES

44 YOU KNOW NOTHING, JON SNOW. 77

YGRITTE

2020-2021

DENGE

SÜRDÜRÜLEBİLİRLİK

restoration

noun [C or U]

UK (*) / res.ter'ei.fen/ US (*) / res.ter'ei.fen/

the act or process of returning something to its earlier good condition or position, or to its owner:

- The first task following the disaster was the restoration of clean water supplies.
- Restoration work on the Sistine Chapel ceiling is now complete.
- A large majority of the population is demanding the restoration of the former government.

Eş anlamlılar

restitution formal

return (GIVING BACK)

The statue of St. George at Navarre, Spain's Church of San Miguel de Estella

One of the ancient Buddhist frescos in Yunjie Temple in Chaoyang, northeast China, that has now been covered by cartoon-like paintings as part of a restoration. Photo courtesy of STR/AFP/Getty Images.

Ocakli Ada Castle (ca. 100) Sile, Turkey

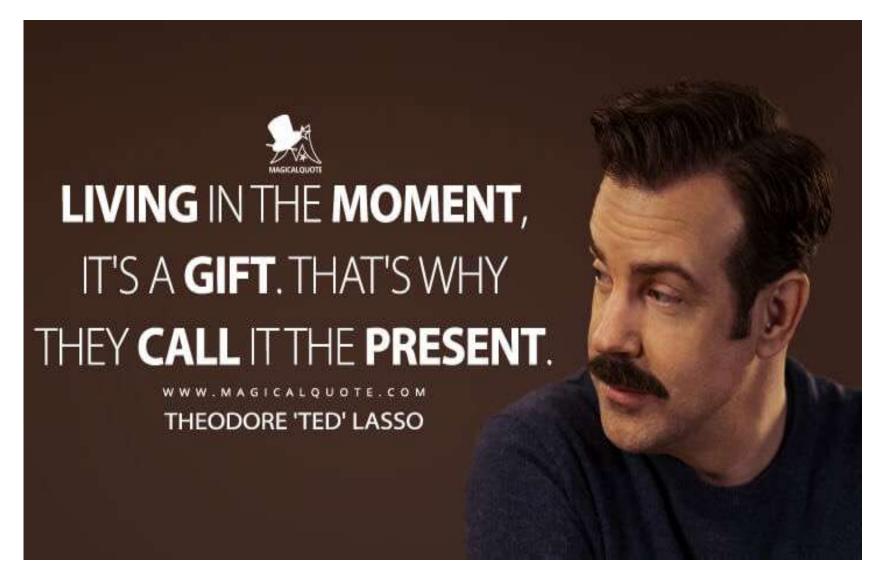


Photo 1931 Before restoration After restoration

