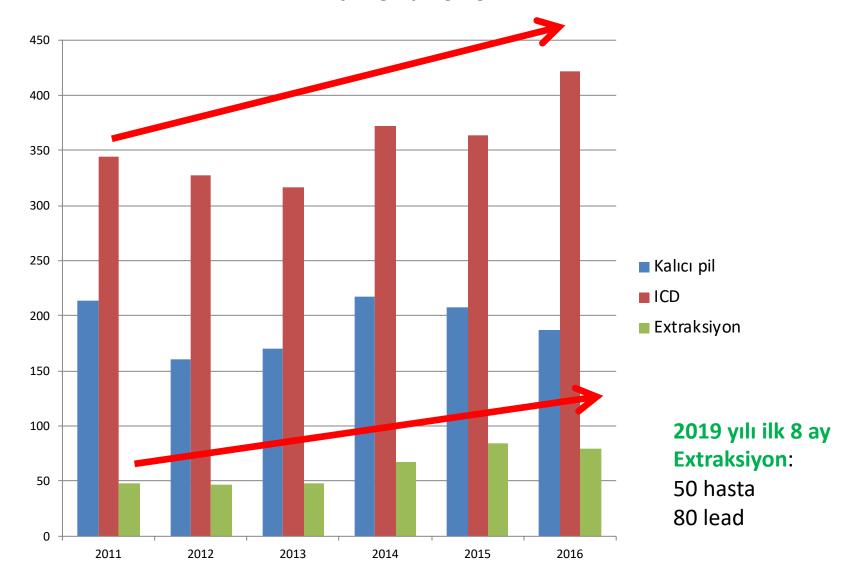
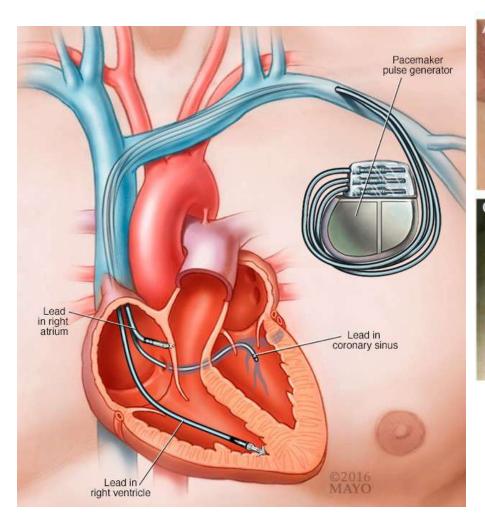
#### **INFEKTIF ENDOKARDIT**

VE DİĞER KARDİYOVASKÜLER İNFEKSİYONLARDA TARTIŞMALI KONULAR: MULTİDİSİPLİNER YAKLAŞIMLAR

Ankara Üniversitesi İbn-i Sina Hastanesi Hasan Ali Yücel Salonu, Ankara







# CIED Enfeksiyonlarında Sistemin Çıkarılması? Cerrahi mi? Perkütan mı?

Prof. Dr. Dursun Aras


Ankara Şehir Hastanesi Kardiyoloji Kliniği Bilkent, Ankara 2018 EHRA expert consensus statement on lead extraction: recommendations on definitions, endpoints, research trial design, and data collection requirements for clinical scientific studies and registries: endorsed by APHRS/HRS/LAHRS

#### TYİH Aritmi ekibi verileri



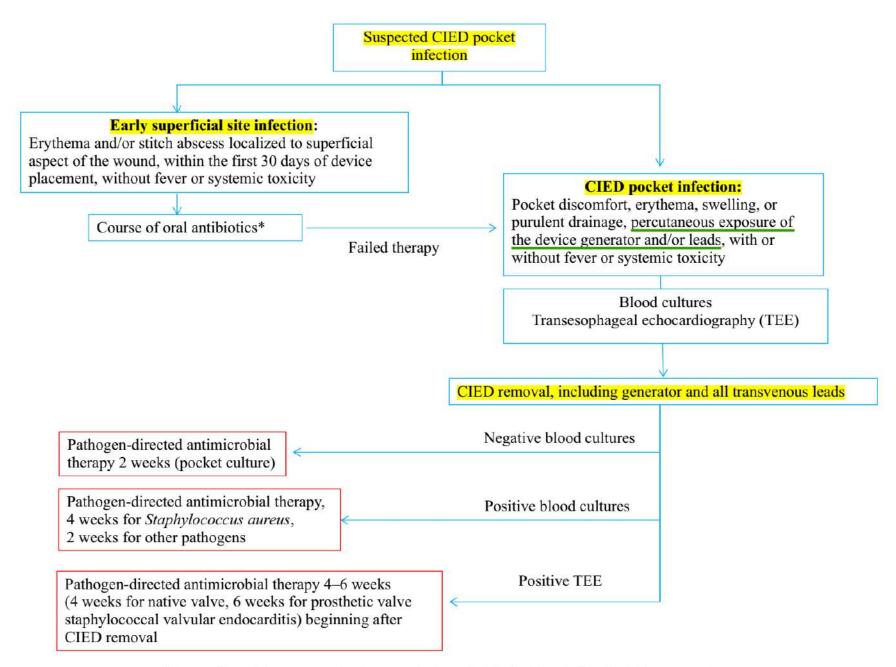




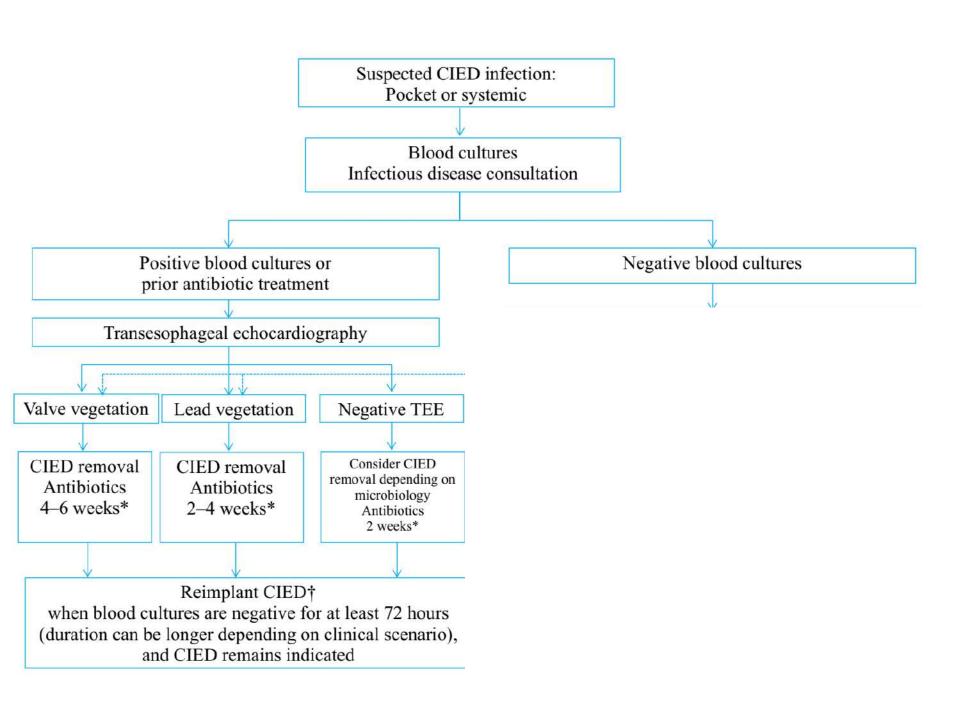


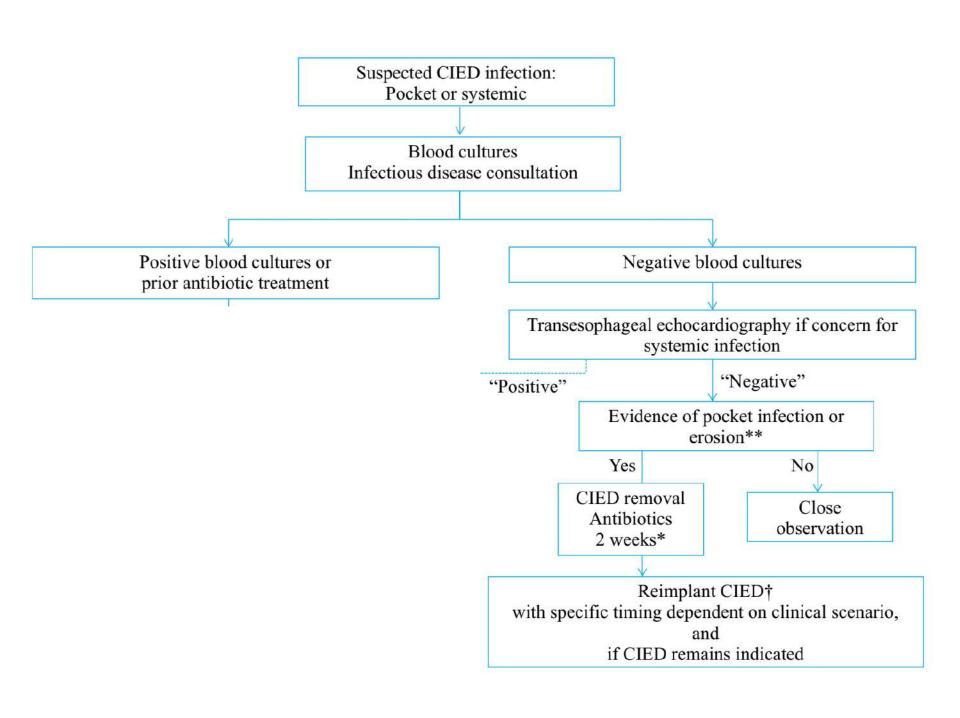
#### CIED-related infection types

| Clinical scenarios    | Infection types | Definitions                      |
|-----------------------|-----------------|----------------------------------|
| Bacteraemia           | Systemic        | Positive blood cultures with or  |
|                       |                 | without systemic infection       |
|                       |                 | symptoms and signs               |
| Pocket infection      | <b>Systemic</b> | Local signs of pocket infection  |
| (open or closed)      |                 | and positive blood cultures,     |
| with bacteraemia      |                 | without lead or valvular         |
|                       |                 | vegetation(s)                    |
| CIED-related endo-    | <b>Systemic</b> | Bacteraemia and lead or valvular |
| carditis without      |                 | vegetation(s), without local     |
| pocket infection      |                 | signs of pocket infection        |
| Pocket infection with | <b>Systemic</b> | Local signs of pocket infection  |
| lead/valvular         |                 | and positive blood cultures and  |
| endocarditis          |                 | lead or valvular vegetation(s)   |
| Occult bacteraemia    | <b>Systemic</b> | Bacteraemia without an alterna-  |
| with probable         |                 | tive source                      |
| CIED infection        |                 |                                  |


# 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction <a>©</a>

| COR | LOE  | Recommendations                                                                                                                                                                                                                                                   |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | C-LD | If antibiotics are going to be prescribed, drawing at least two sets of blood cultures before starting antibiotic therapy is recommended for all patients with suspected CIED infection to improve the precision and minimize the duration of antibiotic therapy. |
|     | C-LD | Gram stain and culture of generator pocket tissue and the explanted lead(s) are recommended at the time of CIED removal to improve the precision and minimize the duration of antibiotic therapy.                                                                 |
|     | B-NR | Preprocedural transesophageal echocardiography (TEE) is recommended for patients with suspected systemic CIED infection to evaluate the absence or size, character, and potential embolic risk of identified vegetations.                                         |
|     | C-E0 | Evaluation by physicians with specific expertise in CIED infection and lead extraction is recommended for patients with documented CIED infection.                                                                                                                |


Device pocket infection might or might not be accompanied by bloodstream infection. In one study, intravascular lead involvement was present in 88% of patients presenting with pocket infection despite lack of symptoms of systemic infection. 123


IIb C-LD Additional imaging may be considered to facilitate the diagnosis of CIED pocket or lead infection when it cannot be confirmed by other methods.

18-Fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography (PET)/computed tomography (CT) scanning might provide helpful evidence when diagnosis of CIED pocket or lead infection is doubtful. <sup>124–126</sup> One study showed that PET/CT had a high sensitivity of 87% and a specificity of 100% for device pocket infection but a low sensitivity of 31% and a specificity of 62% for endocarditis. <sup>127</sup> In another single-center, prospective, controlled study of 86 patients, patients with suspected generator pocket infection requiring CIED extraction had significantly higher <sup>18</sup>F-FDG activity (4.80 [3.18–7.05]) compared with those who did not have the infection (1.40 [0.88–1.73]) and compared with controls (1.10 [0.98–1.40]). <sup>128</sup> The diagnostic performance of <sup>99m</sup>Tc-hexamethypropylene amine oxime–labeled autologous white blood cell (<sup>99m</sup>Tc-HMPAO-WBC) scintigraphy had a sensitivity of 94% for both detection and localization of CIED-associated infection. <sup>129</sup>



**Figure 3** Management of suspected pocket infection. \*See text for examples.





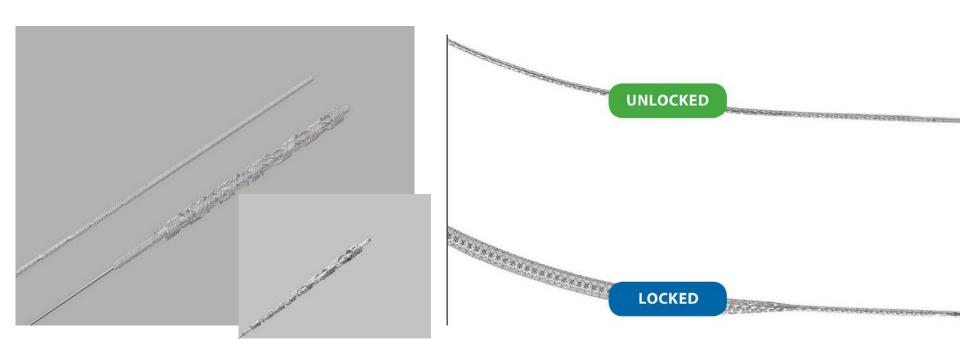
|                  | <del></del>                                          | a s s                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
|------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| I                | B-NR                                                 | Complete device and lead removal is recommended for all patients with definite CIED system infection.                                                                                                                                                                                                                                                                                           | 169–171                                      |
| multi<br>comp    | variate analysis found a<br>lications, the mortality | a and performing lead extraction within 3 days of diagnosis is associated with lower in-hos<br>a 7-fold increase in 30-day mortality if the CIED was not removed. Although CIED remova<br>associated with a delay in removal was even higher. <sup>170</sup> Therefore, CIED-associated infection<br>system removal and should not be delayed, regardless of the timing of the start of antimic | l resulted in fatal<br>ons are the strongest |
| I                | B-NR                                                 | Complete device and lead removal is recommended for all patients with valvular endocarditis without definite involvement of the lead(s) and/or device.                                                                                                                                                                                                                                          | 153,169                                      |
| Ī                | B-NR                                                 | Complete device and lead removal is recommended for patients with persistent or recurrent bacteremia or fungemia, despite appropriate antibiotic therapy and no other identifiable source for relapse or continued infection.                                                                                                                                                                   | 153,165                                      |
| I                | C-EO                                                 | Careful consideration of the implications of other implanted devices and hardware is recommended when deciding on the appropriateness of CIED removal and for planning treatment strategy and goals.                                                                                                                                                                                            | -                                            |
| recipi<br>CIED i | ents often have a CIED infection should under        | IED might have other implanted devices and hardware. For example, left ventricular as in place (up to 87%). In a large series of 247 LVAD patients, 2.8% had CIED infection. Pat go CIED removal to eliminate a potential source of microbial seeding and infection. Charled in concomitant LVAD infection. 173                                                                                 | cients with an LVAD and                      |

| Туре              | Definitions                                                                                                            |
|-------------------|------------------------------------------------------------------------------------------------------------------------|
| Approach          | Defined according to vein used to re-<br>move the lead                                                                 |
| Transvenous       | Percutaneous (closed) lead removal performed through a central vein (subclavian, jugular, and femoral)                 |
| Superior approach | Lead removed above the diaphragm                                                                                       |
| Venous entry site | Lead removed using the implantation venous entry site (right or left subclavian, axillary, cephalic, and jugular vein) |
| Transjugular      | Lead removed using the right internal jugular vein                                                                     |
| Inferior approach | Lead removed below the diaphragm (right or left femoral vein)                                                          |
| Surgical          | Surgical (open) lead removal.                                                                                          |
|                   | Includes standard sternotomy,                                                                                          |

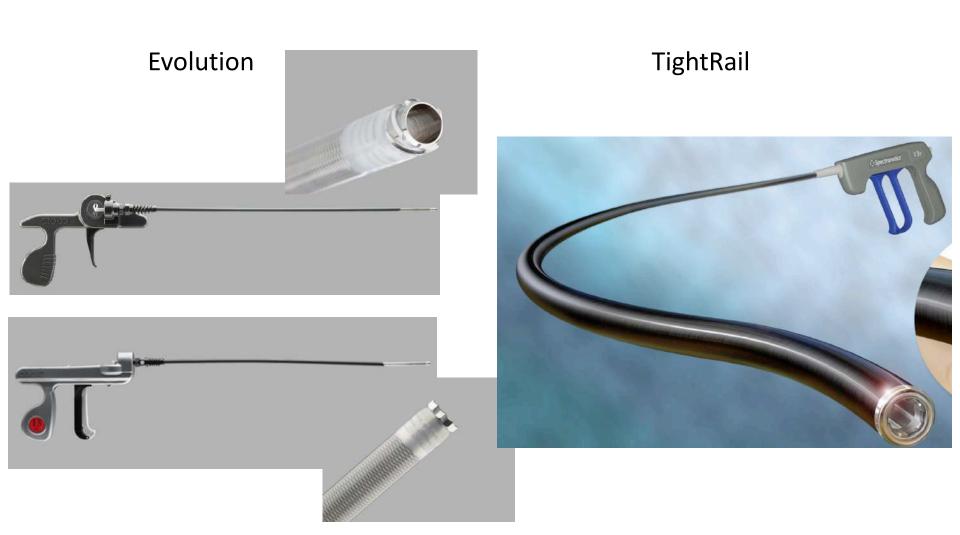
# 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction (9)

10.2.4. Extraction Approach: Open Versus Percutaneous Extraction

The percutaneous approach to lead extractions is generally preferred over open extractions because it is inherently less invasive and significantly reduces patient morbidity.1,110 Conversely, open extractions are generally favored in high-risk extractions to avoid potentially life-threatening complications that can be encountered during percutaneous extractions. The challenge then becomes predicting which extractions are sufficiently high-risk to justify the inherent morbidities associated with open-heart surgery. In general, open extractions are considered when the patient has failed a prior extraction procedure, has another reason for cardiac surgery, or when cardiac imaging identifies large lead masses (vegetation or thrombus > 2.5 cm).<sup>1</sup>


## Lead ekstraksiyonu

- Kilitleme stileleri
- Rotasyonel mekanik cihazlar
- Snare ve Biyoptom
- Lazer cihazlar
- Elektrocerrahi cihazlar (RF)


### Kilitleme stileleri

Liberator Device)

LLD (Lead Locking



## Rotasyonel mekanik cihazlar

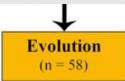


DOI: 10.1111/pace.13755

#### DEVICES



# Comparison of two types of rotational mechanical dilatator sheath: Evolution<sup>®</sup> and TightRail<sup>™</sup>


Serkan Cay MD Ozcan Ozeke MD Firat Ozcan MD Serkan Topaloglu MD Dursun Aras MD


#### Assessed for eligibility

(n = 311)

mechanism. All ICD leads had dual-coil design. The median lead implant duration was 4 years, and no difference was found between the two groups. Infectious etiology was the main indication for extraction in 56.1% of patients. There were no statistically significant differences regarding the procedural success rate (96.6% vs 95.0%), clinical success rate (98.3% vs 97.5%), and total adverse event rate (5.2% vs 10.0%) between the Evolution and TightRail groups, respectively. Procedural success decreased with older leads and higher lead number.

**Conclusions:** Procedural and clinical success rates utilizing both the Evolution and TightRail rotational extraction sheaths were high with low complication rate in chronically implanted leads.





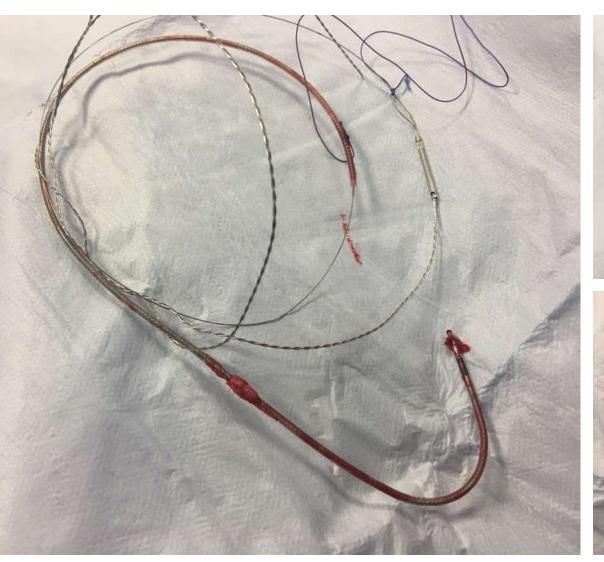
## Snare ve Biyoptom

Tekli kement

Çoklu kement

Needle's Eye Snare








Biyoptom











#### İşlem öncesi

(Hikaye, Fizik muayene, EKG, Tele, Cihaz kontrolü, Lab. Hastanın bilgilendirilmesi)



#### Risk değerlendirmesine göre yer seçimi

(Lead yaşı, çeşidi, sayısı, Hasta yaşı, morbidite varlığı, kırılganlık,..)



Hibrit Oda (>1 yıl lead yaşı)

Elektrofizyoloji Lab. (<1 yıl lead yaşı)



#### Gerekli antimikrobiyal koşulların sağlanarak hastanın hazırlanması

(Çeneden dize kadar boyama, cerrahi örtüler, foley sonda, arteriyel basınç ve oksijenizasyon ölçümü)



#### Anestezi ve analjeninin sağlanması

(Propofol, fentanil, midazolam, gerekirse genel anestezi)



Cep açılması ve implant vene kadar tüm sistemin explore edilmesi

(Jeneratör, leadler, sleeve, dikişler ve varsa enfeksiyöz dokular)



#### Basit traksiyon

(Serbestleşen leadlere basit stileler yerleştirerek çekme)



#### ilk extraksiyon

(Lead makasıyla kesilen leadin kilitleme stilesi kullanılarak manüel çekilmesi)



#### İkinci Extraksiyon

(Kilitleme stilesi olan leadin mekanik sheath kullanılarak çekilmesi)



#### Diğer venöz yollardan Exraksiyon

(İmplant venden çekilemeyen, deforme olan leadlerin ya da parçaların snare, biyoptom gibi malzemelerin kullanılmasıyla çekilmesi)



#### İşlem sonu

(Venöz ve arteriyel yolların hemostazının sağlanarak, cebin primer olarak kapatılması)

# Incidence and Predictors of Perioperative Complications With Transvenous Lead Extractions

Real-World Experience With National Cardiovascular Data Registry

#### **Major Perioperative Complications\***

Circ Arrhythm Electrophysiol. 2018;11:e004768. DOI: 10.1161/CIRCEP.116.004768

| 768<br>Type      | Total (%:<br>Complication<br>Rate: Entire<br>Cohort 11304<br>Extraction<br>Procedures) | High-Voltage Lead Extraction Procedure (%: Complication Rate in 8362 Extraction Procedures) | Pacing Lead Extraction Procedure (%: Complication Rate in 2942 Extraction Procedures) |
|------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Any complication | 258 <mark>(2.3%</mark> )                                                               | 200 (2.4%)                                                                                  | 58 (1.9%)                                                                             |
| Cardiac arrest   | 62 (0.5%)                                                                              | 51 (0.60%)                                                                                  | 11 (0.37%)                                                                            |

**CONCLUSIONS:** The rate of major complications and mortality with transvenous lead extraction is similar in the real-world outcomes to that reported in recent single-center studies from high-volume centers. There is significant risk of urgent cardiac surgery, which carries a high mortality, and planning for appropriate cardiothoracic surgery backup is imperative.

| Pericardial tamponade  | 55 (0.48%)                | 48 (0.57%) | 7 (0.24%)  |
|------------------------|---------------------------|------------|------------|
| Pneumothorax           | 47 (0.4%)                 | 33 (0.39%) | 14 (0.47%) |
| Urgent cardiac surgery | 41 (0.36%)                | 38 (0.45%) | 3 (0.10%)  |
| Death                  | 98 ( <mark>0.86%</mark> ) | 79 (0.94%) | 19 (0.65%) |

### Lead Ekstraksiyon Komplikasyon ve Mortalite Riskini Artıran Faktörler

**Table 4** Factors associated with extraction procedure complications and longer-term mortality

| Q1                                  | ****                                                                                                 |
|-------------------------------------|------------------------------------------------------------------------------------------------------|
| Factor                              | Associated risk                                                                                      |
| Age                                 | 1.05-fold ↑ mortality <sup>238</sup>                                                                 |
| Female sex                          | 4.5-fold ↑ risk of major complications <sup>239</sup>                                                |
| Low body mass index                 | 1.8-fold ↑ risk of 30-day mortality <sup>62</sup>                                                    |
| (<25 kg/m <sup>2</sup> )            | ↑ no. of procedure-related complications <sup>212</sup>                                              |
| History of cerebrovascular accident | 2-fold ↑ risk of major complications <sup>62</sup>                                                   |
| Severe LV dysfunction               | 2-fold ↑ risk of major complications <sup>62</sup>                                                   |
| Advanced HF                         | 1.3- to 8.5-fold ↑ risk of 30-day mortality <sup>62</sup>                                            |
|                                     | 3-fold ↑ 1-year mortality <sup>240</sup>                                                             |
| Renal dysfunction                   | ESRD: 4.8-fold ↑ risk of 30-day mortality <sup>62</sup>                                              |
|                                     | Cr ≥2.0: ↑ in-hospital mortality <sup>210</sup> and 2-fold ↑ risk of 1-year mortality <sup>240</sup> |
| Diabetes mellitus                   | ↑ in-hospital mortality <sup>212</sup>                                                               |
|                                     | 1.71-fold ↑ mortality <sup>238</sup>                                                                 |
| Platelet count                      | Low platelet count: 1.7-fold ↑ risk of major complications <sup>62</sup>                             |

| Coagulopathy              | Elevated INR: 2.7-fold ↑ risk of major complications and 1.3-fold ↑ risk of 30-day mortality <sup>62</sup> |
|---------------------------|------------------------------------------------------------------------------------------------------------|
|                           | Anticoagulant use: 1.8-fold ↑ 1-year mortality <sup>240</sup>                                              |
| Anemia                    | 3.3-fold ↑ risk of 30-day mortality <sup>62</sup>                                                          |
| Number of leads extracted | 3.5-fold ↑ risk of any complication <sup>241</sup>                                                         |
|                           | 1.6-fold ↑ long-term mortality <sup>242</sup>                                                              |
| Presence of dual-coil ICD | 2.7-fold ↑ risk of 30-day mortality <sup>62</sup>                                                          |
| Extraction for infection  | 2.7- to 30-fold ↑ risk of 30-day mortality <sup>62</sup> , <sup>241</sup>                                  |
|                           | 5- to 9.7-fold ↑ 1-year mortality <sup>62,242</sup>                                                        |
|                           | CRP >72 mg/L associated with ↑                                                                             |
|                           | 30-day mortality <sup>243</sup>                                                                            |
|                           | 3.52-fold ↑ mortality <sup>238</sup>                                                                       |
| Operator experience       | 2.6-fold ↑ no. of procedure-related complications <sup>244</sup>                                           |
| Prior open heart surgery  | ↓ risk of major complications <sup>241</sup>                                                               |

# Percutaneous Lead Extraction in Infection of Cardiac Implantable Electronic Devices: a Systematic Review Braz J Cardiovasc Surg 2018;33(2):194-202

Table 3. Characteristics of selected studies in relation to device extraction and in-hospital and long-term mortality.

| Author                          | Patients<br>(number) | Method of extraction<br>of intracardiac<br>devices | Complications<br>related to<br>extraction<br>(%) | Mortality<br>during<br>hospitalization<br>(%) | Follow-up time<br>(months) | Long-term<br>mortality<br>(%) |
|---------------------------------|----------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------|-------------------------------|
| Greenspon et al. <sup>16]</sup> | 129                  | Percutaneous: 112<br>Surgery: 17                   | Majors: 4.6<br>Minors: -                         | 10.8                                          | 6                          | 14.5                          |
| Rickard et al.[14]              | 151                  | Percutaneous: 151<br>Surgery:                      | 3#6                                              | 6.6                                           | 24                         |                               |
| lpek et al. <sup>[20]</sup>     | 34                   | Percutaneous: 28<br>Surgery: 5                     | Majors: 2.9<br>Minors: 14.7                      | 8.8                                           | P.                         | -3:                           |
| Pichlmaier et al.[25]           | 178                  | Percutaneous: 144                                  | Majors: 2.2                                      | 3.9                                           | Average of 55              | 18.5                          |

The main indications for surgical removal were the failure of transvenous extraction, large vegetations, vascular trauma in percutaneous extraction, the need for epicardial leads, concomitant valve involvement, abscesses, and tricuspid valve stenosis<sup>[16,20,25]</sup>.

| Goya et al. <sup>[22]</sup> | 183  | Percutaneous: 183<br>Surgery: 4  | Majors: 2.7<br>Minors: 3.8  | 2.2 |               |                          |
|-----------------------------|------|----------------------------------|-----------------------------|-----|---------------|--------------------------|
| Deharo et al.[13]           | 197  | Percutaneous: 189<br>Surgery: 13 | Majors: 1.0<br>Minors: 12.2 | 4.1 | Average of 25 | 1 year: 14.3<br>5 years: |
|                             |      |                                  |                             | Do  | rcutane       | ous: 3081                |
| otal                        |      |                                  | 3354                        | 16  | Surger        |                          |
| otal                        |      | Z. G. C. J.                      | 3354                        | 16  |               |                          |
| otal                        | 3354 |                                  |                             |     |               |                          |

### Explantation of Implantable Defibrillator Leads Using Open Heart Surgery or Percutaneous Techniques

(Ann Thorac Surg 2008;85:50-5)

Cerrahi: 21 hasta, Perkütan 53 hasta

Table 2. Results of Explantation

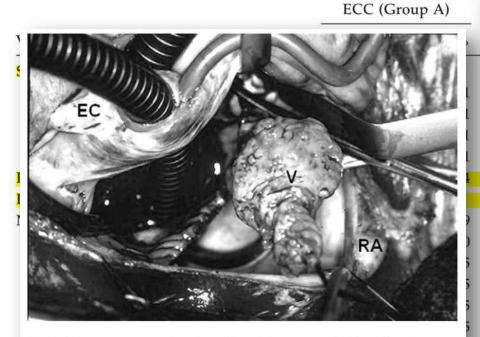



Fig 4. Intraoperative view into the right atrium (RA) with a large vegetation surrounding an implantable cardioverter defibrillator lead. (EC = extracorporeal circulation access; V = infective vegetation.)

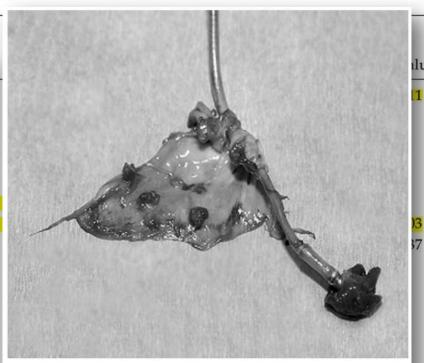



Fig 3. Picture of a transvenously extracted implantable cardioverter defibrillator lead with an attached tricuspid valve leaflet. Notice the myocardial tissue at the tip of the implantable cardioverter defibrillator lead.

# Percutaneous Pacemaker and Implantable Cardioverter-Defibrillator Lead Extraction in 100 Patients With Intracardiac Vegetations Defined by Transesophageal Echocardiogram

(J Am Coll Cardiol 2010;55:886-94)

CIED enfeksiyonları **tedavi edilmez ise mortalite** %66,

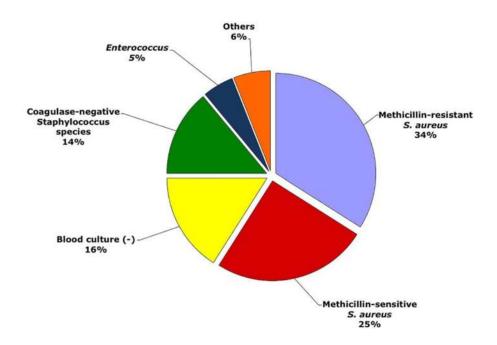
sistemin çıkarılması ve antibiyotik ile **tedavi edilir ise** %18

Cihaz enfeksiyonlarında endokardit sıklığı %10 (bazı serilerde %20-25)


984 hastada 1850 lead çıkarılmış,

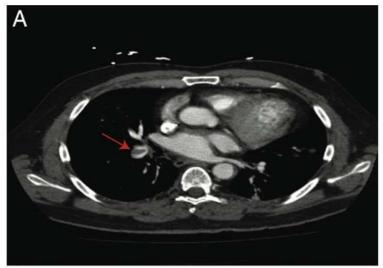
- ✓ 480 hasta (%49) sistemik ya da lokal enfeksiyon endikasyonu ile.
- ✓ 100 hastada TEE'de intrakardiyak vejetasyon var (%10)

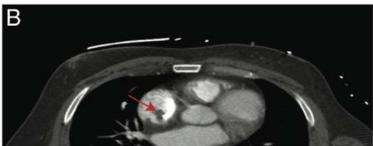
56 hastada lead üzerinde , 35 hastada kapak üzerinde Vejetasyon büyüklüğü 0.2- 4 cm, ortalama 1.6 cm


Bütün hastalarda EPS lab'da perkütan yolla lead çıkarılmış, Cerrahi hiçbir hastada gerekmemiş.






#### Figure 2 ICE and TEE of Lead Vegetation


(A) Intracardiac echocardiogram (ICE) shows vegetations attached to both right ventricle (RV) and right atrium (RA) leads. (B) Transesophageal echocardiogram (TEE) of lead vegetation attached to the RV lead as it crosses the tricuspid valve. The approximate diameter is 2.4 cm. LA = left atrium.



# 54 hastaya hospitalizasyon sırasında yeni cihaz takılm 46 hastaya indeks hospitalizasyonda cihaz takılmamış

- 18 hasta devam eden sistemik enfeksiyon neden
- 18 hastada tekrar cihaz takılma endikasyonu olm
- 39 hasta stabil şekilde taburcu edilmiş,
- 7 hasta hospitalizasyon sırasında ölmüş.
- Ortalama 15 aylık takipte mortalite %27 (19 hasta),
- 30 günlük mortalite %10,
- Hospitalizasyon süresince 10 hasta ölmüş,
- En sık ölüm nedeni persistan septisemi (%59)





### Pulmoner embolism;

- Ventilasyon-perfüzyon sintigrafisi ile bir çalışmada %34
- Başka bir çalışmada %55
- Pulmoner emboli olmayanlara göre hospitalizasyon süresi aynı ve mortaliite yok.
- Bu çalışmada 3 p. emboli var: 2 hastada vejetasyon >2 cm, bir hastada 1.2 cm
- 3 hastada tam iyileşmiş ve taburcu olmuş.

ng ptic ) a on.

| I able 2  | rust-ope                | rative 30-Day                 | Wortanty                                                                                                                                                     |    |        |           |
|-----------|-------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|-----------|
| Patient # | Vegetation<br>Size (cm) | Death After<br>Explant (days) | Brief Clinical Summary                                                                                                                                       |    |        |           |
| 1         | 1.0                     | 5                             | Device reimplanted but severe  Enterococcus sepsis persisted with subsequent VDRF, ARF, and MOSF                                                             | 6  | 6 3.0  | 6 3.0 0   |
| 2         | 2.9                     | 21                            | Developed diffuse purulent<br>lymphadenopathy and bilateral<br>pneumonia; MSSA sepsis with<br>septic emboli found at autopsy                                 |    |        |           |
| 3         | NA                      | 18                            | Fever, hypotension, and MRSA sepsis                                                                                                                          | 7  | 7 2.2  | 7 2.2 14  |
| 4         | NA                      | 15                            | Treated for sepsis; post-extraction<br>transesophageal echocardiogram<br>revealed persistent mitral valve                                                    |    |        |           |
|           |                         |                               | vegetation and right atrial mass.  Transferred to skilled nursing facility 8 days later; died 1 week later of presumed septicemia                            | 8  | 8 NA   | 8 NA 12   |
| 5         | 1.8                     | 5                             | Initial device extraction without incident, new device reimplanted 4 days later; found unresponsive 1 day later; echocardiogram negative for tamponade; ACLS | 9  | 9 1.4  | 9 1.4 10  |
| _         | _                       | _                             | initiated for PEA code was unsuccessful                                                                                                                      | 10 | 10 1.5 | 10 1.5 20 |

Table 2 Post-Operative 30-Day Mortality

ACLS = advanced cardiac life support; ARF = acute renal failure; HD = hemodialysis; MOSF = multiorgan system failure; MRSA = methicillin-resistant *Staphylococcus aureus*; MSSA = methicillin-sensitive *Staphylococcus aureus*; NA = not applicable; PEA = pulseless electrical activity; VDRF = ventilator-dependent respiratory failure.

hospital

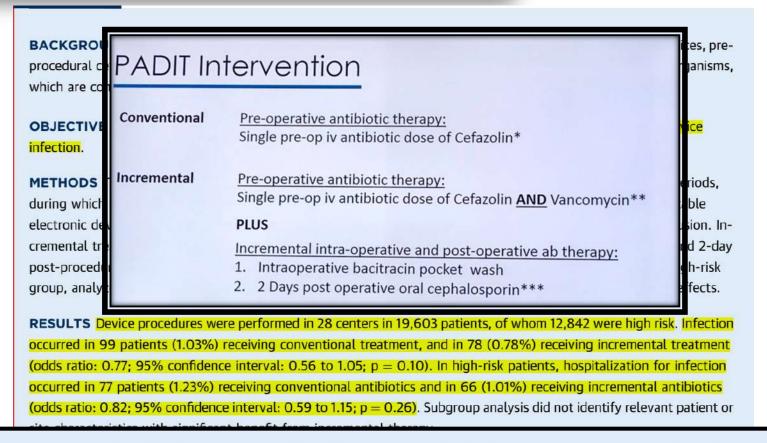
#### Cerrahi lead çıkarmada morbidite ve mortalite yüksek,

#### Cerrahi mortalite %12.5-%40

Direkt karşılaştırmalı çalışma yok.

| First Author, Year<br>(Ref. #) | n     | Extraction<br>Approach* | Post-Operative<br>Mortality, % (n) | Major<br>Complications† | Comments                                                                                     |
|--------------------------------|-------|-------------------------|------------------------------------|-------------------------|----------------------------------------------------------------------------------------------|
| Brodman, 1992 (18)             | 11    | Surgical                | 9% (1)                             | NA                      | Death related to sepsis                                                                      |
| Frame, 1993 (10)               | 13    | Surgical                | 15% (2)                            | NA                      | Deaths related to sepsis                                                                     |
| Klug, 1996 (14)                | 12‡   | Surgical                | 16.6% (2)                          | NA                      | Deaths related to sepsis; post-operative mortality 7.6%; 30% septic embolization             |
|                                | 38‡   | Percutaneous            |                                    |                         |                                                                                              |
| Cacoub, 1998 (28)              | 29‡   | Surgical                | 12.4% (4)                          | NA                      | Post-operative period defined as <8 days; IE proven by histology; overall mortality 24%      |
|                                | 4‡    | Percutaneous            |                                    |                         |                                                                                              |
| Byrd, 1999 (33)                | 2,338 | Percutaneous            | 0.4%                               | 1.6%                    | U.S. lead extraction database                                                                |
| Victor, 1999 (15)              | 9‡    | Surgical                | 11% (1)                            | NA                      | Deaths related to sepsis and heart failure; 12 patients had vegetations >1 cm                |
|                                | 14‡   | Percutaneous            | 21% (3)                            |                         |                                                                                              |
| Byrd, 2002 (44)                | 1,684 | Percutaneous            | 0.8% (13)                          | 1.9%                    | Total laser experience in U.S. (1995-99)                                                     |
| del Rio, 2003 (29)             | 5‡    | Surgical                | 40% (2)                            | 40%                     | 12.5% "surgical" mortality includes surgical and percutaneous approaches                     |
|                                | 25‡   | Percutaneous            | 4% (1)                             | 8%                      |                                                                                              |
| Meier-Ewert, 2003 (30)         | 9‡    | Percutaneous            | 11% (1)                            | NA                      | Death from sepsis; 55% septic emboli                                                         |
| Massoure, 2007 (35)            | 20‡   | Surgical                | 5.3% (3)                           | NA                      | 90% with IE; mean vegetation size 1.3 cm; deaths related to sepsis                           |
|                                | 37‡   | Percutaneous            |                                    |                         |                                                                                              |
| Sohail, 2007 (31)              | 19    | Surgical                | 5.3% (1)                           | 26%                     | 7 deaths during IH, only 2 procedure related;<br>5 deaths (11%) due to sepsis in 23% with IE |
|                                | 166   | Percutaneous            | 0.6% (1)                           | 12%                     |                                                                                              |
| Camboni, 2008 (45)             | 21    | Surgical                | 9.5% (2)                           | 14%                     | Long-term survival between groups similar (p = $0.11$ )                                      |
|                                | 53    | Percutaneous            | 0%                                 | 6%                      |                                                                                              |
| Jones, 2008 (34)               | 485   | Percutaneous            | 0%                                 | 0.4%                    | Limited data on 85 patients with IE                                                          |

# CIED İnfeksiyonu risk faktörleri


Table 3 Risk factors for cardiovascular implantable electronic device infection 154-166

| Patient-related factors                                                                                                                                                                                               | Procedure-related factors                                                                                                                                                                                  | Microbe-related factors                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Age Chronic kidney disease Hemodialysis Diabetes mellitus Heart failure Chronic obstructive pulmonary disease Preprocedure fever Malignancy Skin disorder Immunosuppressive drug Prior CIED infection Anticoagulation | Pocket reintervention (generator change, upgrade, lead or pocket revision) Pocket hematoma Longer procedure duration Inexperienced operator ICD (compared with PM) Lack of use of prophylactic antibiotics | Highly virulent microbes<br>(eg, staphylococci) |

# Prevention of Arrhythmia Device Infection Trial

The PADIT Trial

(J Am Coll Cardiol 2018;72:3098-109)



**CONCLUSIONS** The cluster crossover design efficiently tested clinical effectiveness of incremental antibiotics to reduce device infection. Device infection rates were low. The observed difference in infection rates was not statistically significant. (Prevention of Arrhythmia Device Infection Trial [PADIT Pilot] [PADIT]; NCTO1002911)

# Antibacterial Envelope to Prevent Cardiac Implantable Device Infection

This article was published on March 17, 2019, at NEJM.org.

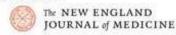
DOI: 10.1056/NEJMoa1901111



Multifilament knitted mesh coated with absorbable polymer mixed with

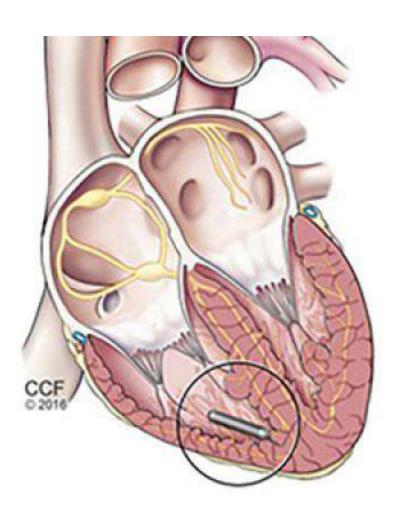
#### minocycline and rifampin

**Elutes antibiotics** for a minimum of **7 days** Fully **absorbed** in ~ **9 weeks** 


Primary end point (infection resulting in system extraction or revision, long-term antibiotic therapy with infection recurrence, or death, within 12 months of procedure):

25 pts in envelope group, 42 in control

HR 0.6


95% CI 0.36-0.98, P=0.04

Trial published in



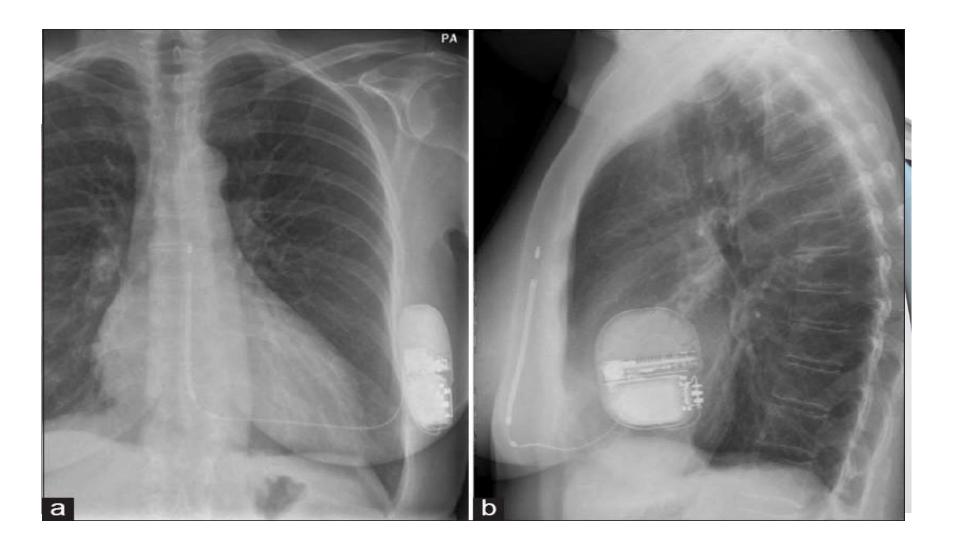
DOI: 10.1056/NEJMoa1901111


# Leadless pacemaker








# Leadless pacemaker



D. Aras ve ark.

Türkiye Yüksek İhtisas Hastanesi Aritmi Ekibi arşivinden., 2016

## S-ICD: Subkutan ICD

