

Turkish Clinical Microbiology and Infectious Diseases Congress (KLIMIK 2019)

Gloria Golf Resort Hotel Belek, Antalya

Pathogenesis of Gram positive Bacterial Infections - Optimizing Treatment

Annelies S Zinkernagel

Division of Infectious Diseases & Hospital Epidemiology

University Hospital Zurich

University of Zurich

Switzerland

Health Topics ✓

Countries >

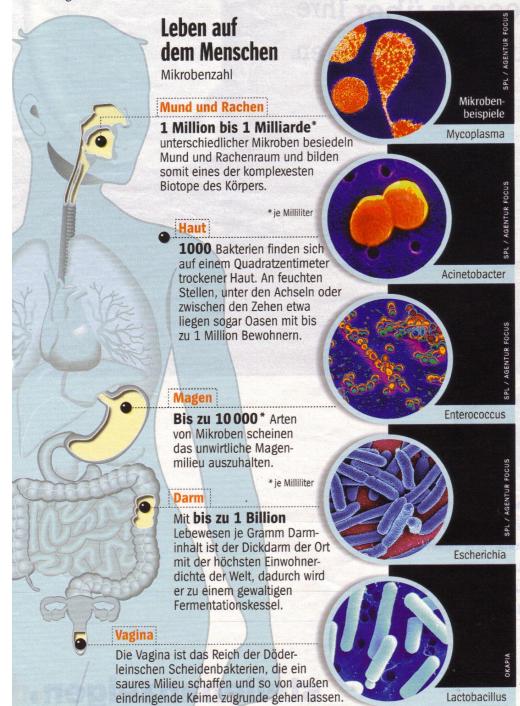
News **∨**

Emergencies **▼**

Home / News / Fact sheets / Detail / The top 10 causes of death

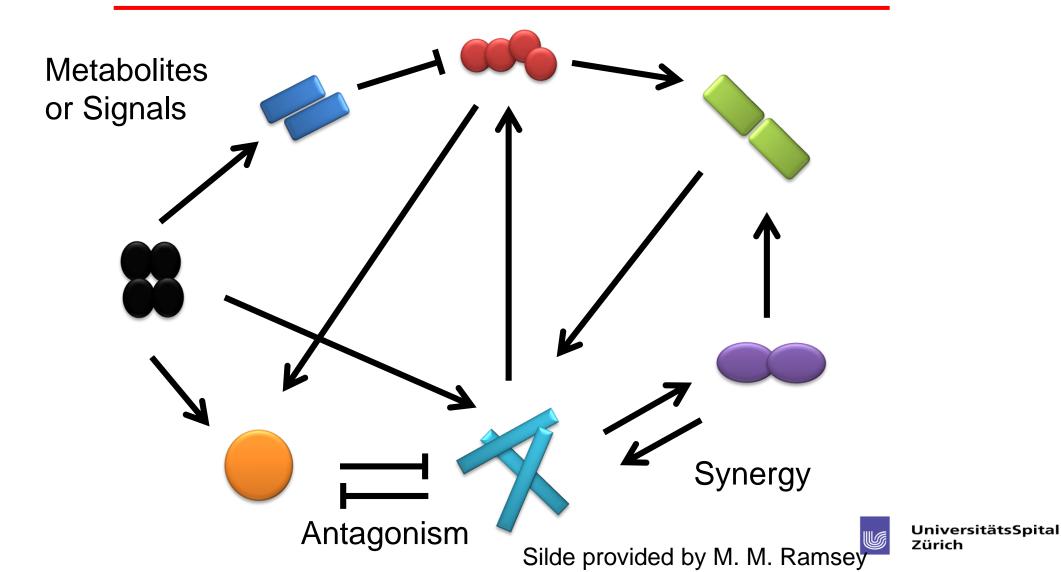
The top 10 causes of death in 2019

6 out of 10 infectious diseases

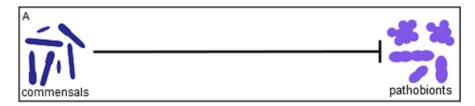

- Global influenza pandemic
- Antimicrobial resistance
- Ebola and other high-threat pathogens
- Vaccine hesitancy
- Dengue

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

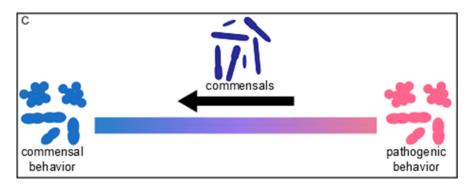
HIV



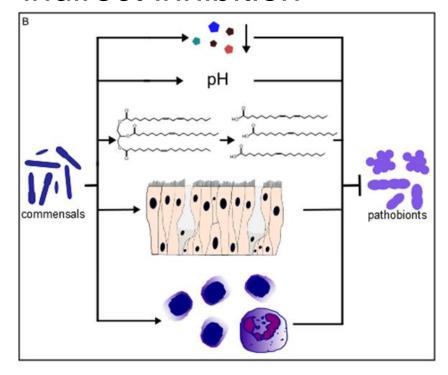
Bacteria - Host

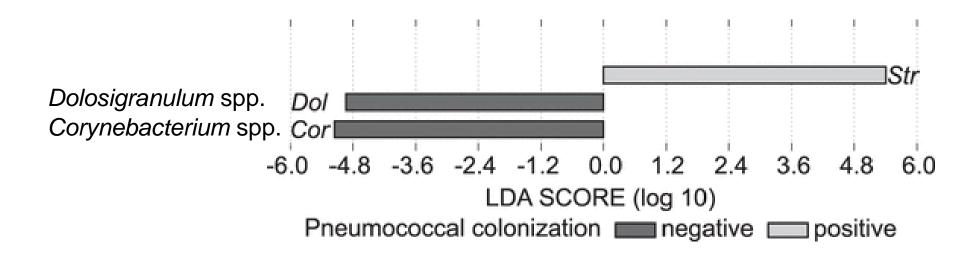

niversitätsSpital irich

Commensals can prevent (nasal) colonization of pathobionts



Commensal – pathobiont - interactions

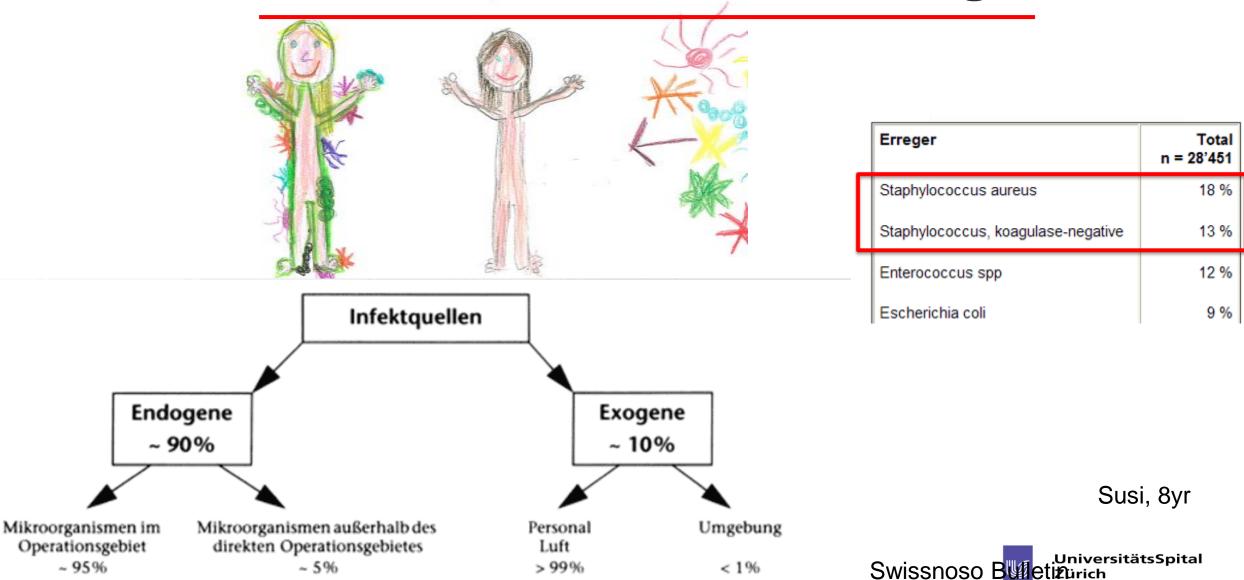

direct inhibition

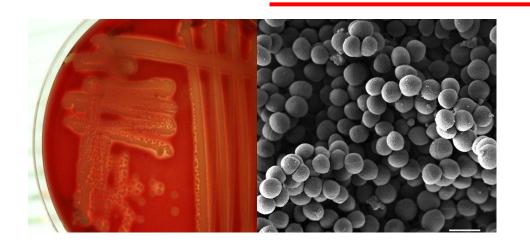

behavior shift

indirect inhibition

Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols

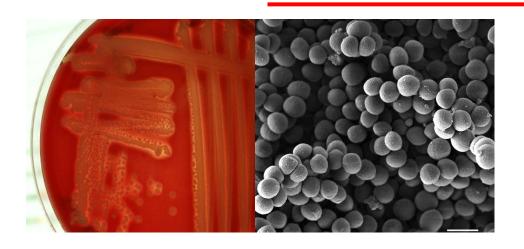
Commensales Misbehaving




Table 1. Partial list of human infections involving biofilms.

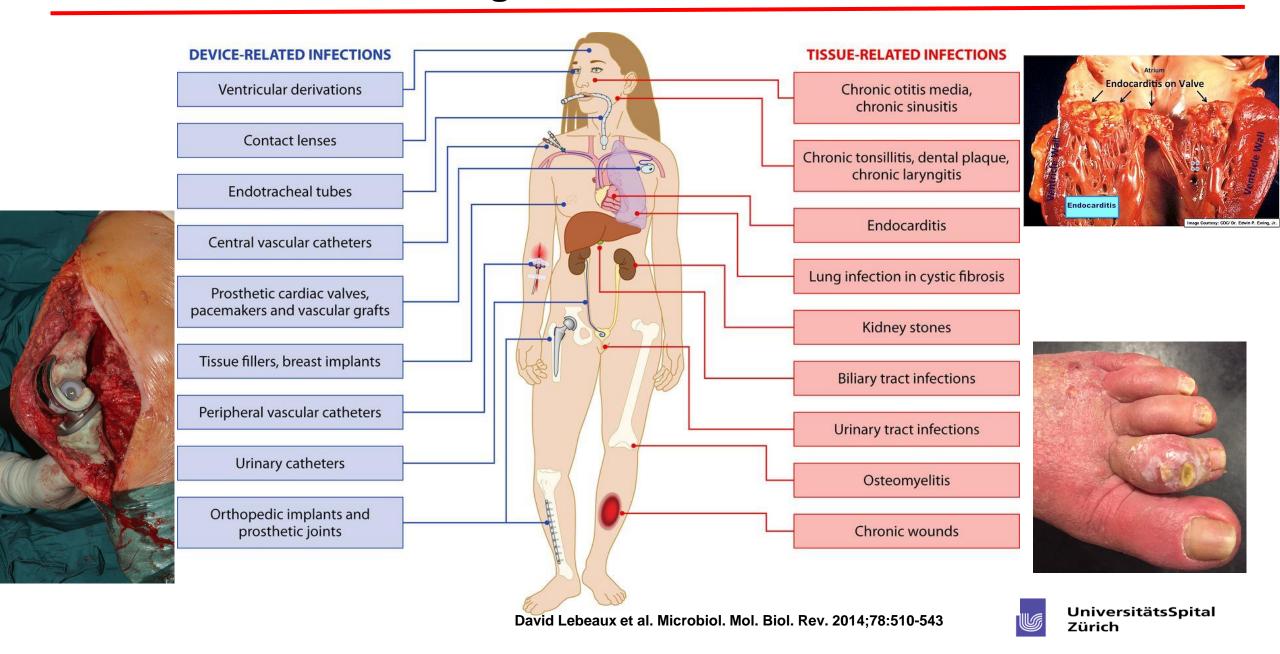
Infection or disease	Common biofilm bacterial species
Dental caries	Acidogenic Gram-positive cocci (e.g., Streptococcus)
Periodontitis	Gram-negative anaerobic oral bacteria
Otitis media	Nontypable strains of Haemophilus influenzae
Musculoskeletal infections	Gram-positive cocci (e.g., staphylococci)
Necrotizing fasciitis	Group A streptococci
Biliary tract infection	Enteric bacteria (e.g., Escherichia coli)
Osteomyelitis	Various bacterial and fungal species—often mixed
Bacterial prostatitis	E. coli and other Gram-negative bacteria
Native valve endocarditis	Viridans group streptococci
Cystic fibrosis pneumonia	P. aeruginosa and Burkholderia cepacia
Meloidosis	Pseudomonas pseudomallei
Nosocomial infections	
ICU pneumonia	Gram-negative rods
Sutures	Staphylococcus epidermidis and S. aureus
Exit sites	S. epidermidis and S. aureus
Arteriovenous shunts	S. epidermidis and S. aureus
Schleral buckles	Gram-positive cocci
Contact lens	P. aeruginosa and Gram-positive cocci
Urinary catheter cystitis	E. coli and other Gram-negative rods
Peritoneal dialysis (CAPD) peritonitis	A variety of bacteria and fungi
IUDs	Actinomyces israelii and many others
Endotracheal tubes	A variety of bacteria and fungi
Hickman catheters	S. epidermidis and C. albicans
Central venous catheters	S. epidermidis and others
Mechanical heart valves	S. aureus and S. epidermidis
Vascular grafts	Gram-positive cocci
Biliary stent blockage	A variety of enteric bacteria and fungi
Orthopedic devices	S. aureus and S. epidermidis
Penile prostheses	S. aureus and S. epidermidis

Science 1999;284:1318

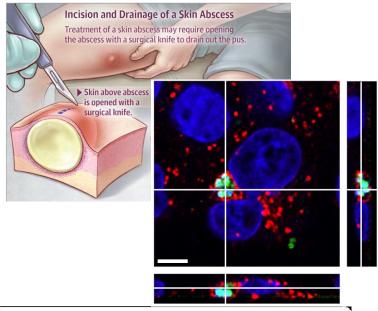

Staphylococcus aureus: a commensal

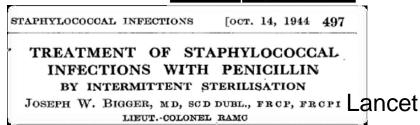

- Gram positive extracellular bacterium
- 30% colonization

Staphylococcus aureus: a commensal misbehaving

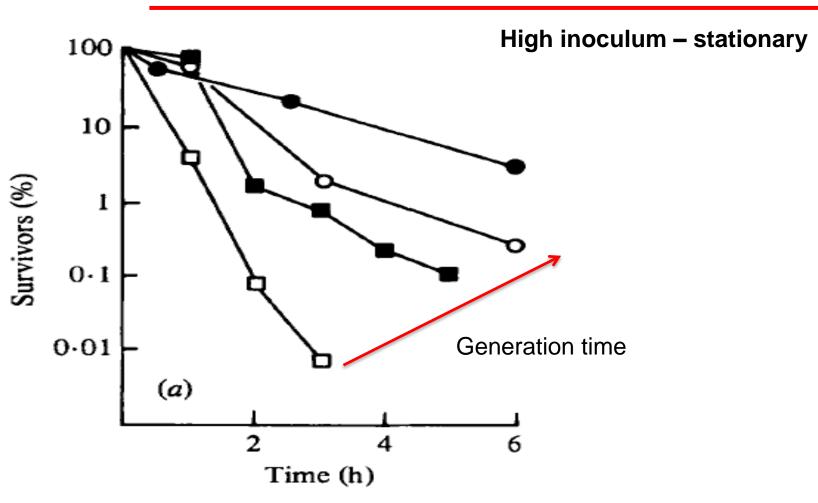


- Gram positive extracellular bacterium
- 30% colonization
- Increased risk for subsequent infection
 - Recurring skin infections abscesses
 - Prosthetic joint infections
 - Endocarditis



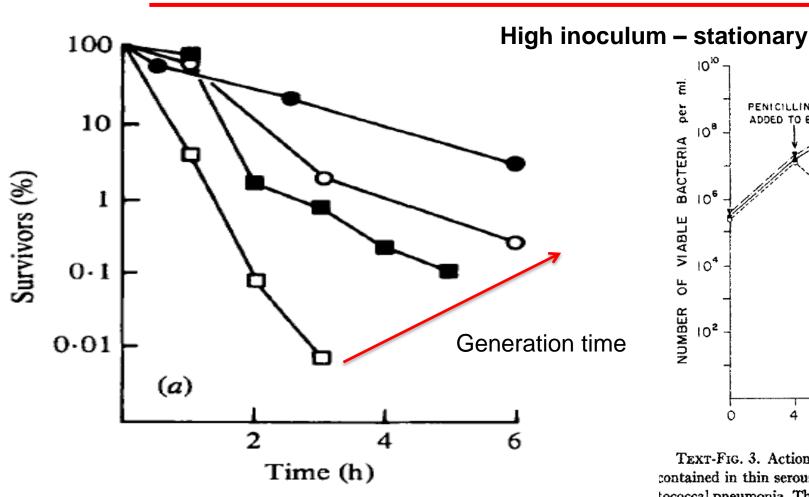

Chronic –recurring infections - Biofilm-related infections

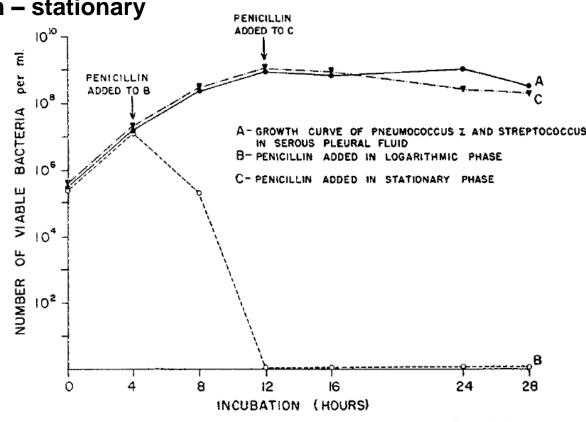
How do bacteria withstand antibiotics?



Resistance - MRSA Susceptible

- 1. 'Location':
 - in 'privileged' sites such as abscess, intracellular, biofilm
 - –> AB do not reach bacteria, milieux
- · 2. 'Growth'
 - Stationary bacteria
 - Persisters = metabolically inactive


Rate of bacterial killing by beta-lactams is proportional to the bacterial growth rate



Rate of bacterial killing by beta-lactams is proportional to the bacterial growth rate

Tuomanen et al, J Gen Microbiology, 1986

Text-Fig. 3. Action of penicillin on type I pneumococci and beta hemolytic streptococci contained in thin serous fluid collected from pleural cavities of rats with experimental streptococcal pneumonia. The pneumococci were added to the fluid at the start of each experiment.

J Ex Med 1956

RELATION OF THE SIZE OF THE INOCULUM AND THE AGE OF THE INFECTION TO THE CURATIVE DOSE OF PENICILLIN IN EXPERIMENTAL SYPHILIS, WITH PARTICULAR REFERENCE TO THE FEASIBILITY OF ITS PROPHYLACTIC USE

BY HARRY EAGLE, M.D., H. J. MAGNUSON, M.D., AND RALPH FLEISCHMAN

Rabbits were inoculated intratesticularly with 2,000 spirochetes. oil and beeswax.

~ Jr.....

thereafter, penicillin was given as a single intramuscular injection of a (From the Laboratory of Experimental Therapeutics of the United States Public Health Service and The Johns Hopkins School of Hygiene, Baltimore)

Time when penicillin was administered	Penicillin	No.	Devel- oped syphi- litic	Results of lymph node transfer on animals apparently pro- tected		No. of ani- mals	Animala	Protective dose of penicillin	
after inoculation	dosage	tested	lesion despite peni- cillin	No. tested	Infec- tious	pro- tected	protected*	PD ₆₀ (50 per cent of animals pro- tected)	PD: (90 per cent of animals pro- tected)
	units/kg.						per cent	units/kg.	units/kg.
	16,000	6	0	6	0	6	100		
-	8,000	6	0	5	0	6	100		
4 hrs.	4,000	6	0	4	0	6	100	1,500	3,500
	2,000	6	2	2	0	4	67 (71)	(
	1,000	4	3	1	0	3	25 (17)	[
	16,000	5	0	4	0	5	100		
	8,000	5	0	5	0	5	100		
4 days	4,000	6	0	5	0	6	100	2,000	3,500
	2,000	5	3	2	0	2	40		
	1,000	4	4	-	_	U	0	1	
	64,000	6	0	6	0	6	100		
	32,000	6	3	3	0	3	50 (77)		
2 wks.	16,000	5	1	4	0	4	80 (64)	14,000	50,000
	8,000	6 5	4	2	0	2	33 (20)		
	4,000	3	4	1	1‡	0	0	1	
	160,000	5	1	3	0	4	80 (89)		
	80,000	5	ō	5	1	4	80 (67)	1	
6 wks.§	40,000	5	1	4	4	0	0	65,000	160,000
	20,000	5	2	3	3	0	0	(,
	10,000	6	0	6	6	0	0		

1947

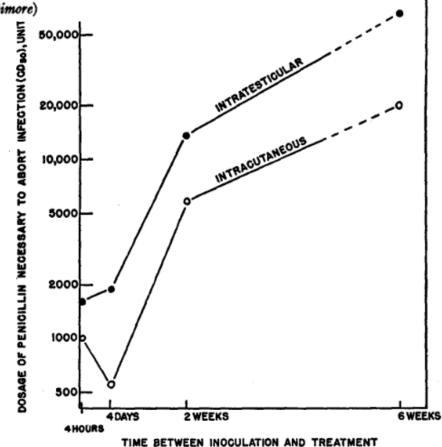


Fig. 2. Relation of the age of the infection to the curative (abortive) dose of penicilli Rabbits were inoculated intracutaneously or intratesticularly with $2 \times 10^{\circ}$ organisms. varying periods after inoculation, penicillin was administered as a single intramuscular injecti of a suspension in peanut oil and beeswax. The dashed portion of the curves indicates the the animals had developed darkfield-positive lesions by the 6th week, and that treatment that time was curative rather than abortive

TABLE II

Effect of the Size of the Inoculum on the Curative Dose of Penicillin G in White Mice Infected with a Group B β-Hemolytic Streptococcus*

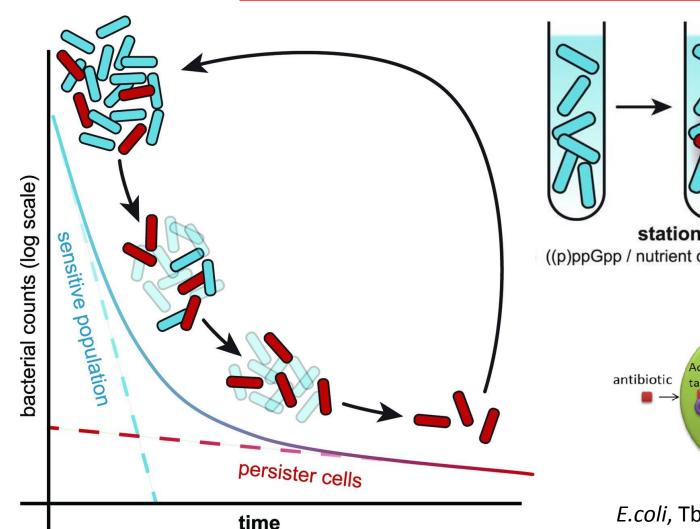
	No. of organisms inoculated;	Penicillin	Survived	Died	Curative dose (CDse) of penicillin G, ± standard errors, [
		mg./kg.			mg./hg.
		2,048	20	0	
		1,024	18	2	
Group 1	2,235,000	512	9	11	424±52
_		256	7	13	
		128	1	19	
		0	0	10	
		1,024	20	0	
		512	14	6	
		256	5	15	
Group 2	180,000	128	0	20	339±45
-		64	1	19	
		32	1	19	
		0	0	10	
		256	19	1	
		128	7	13	
Group 3	1,750	64	2	18	139±51**,§
-	(estimated)	32	1	19	
		16	5	15	
		0	1	9	
		64	19	1	
		32	15	. 5	
		16	18	2	
Group 4	17¶	8	11	9	2.8±1.1
-		4	14	6	
		2	11	9	
		1	7	13	
		0	1	9	

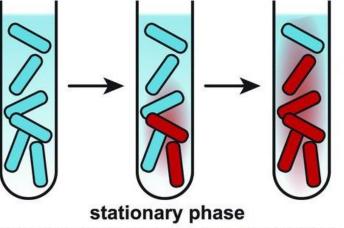
The mice (CFW strain) were inoculated intraperitoneally with an appropriate dilution of a 3 hour culture in blood-broth, and treated immediately with a single intramuscular injection of penicillin G in aqueous solution. The number of organisms indicated in the table is actually the number of bacterial clumps, determined by plate counts. The number of organisms per clump in the original culture averaged 2.0.

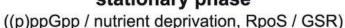
Curative dose of penicillin increases with the size of the inoculum, and increases also with the age of the infection (paradoxical more-drug-kills-less Eagle effect)

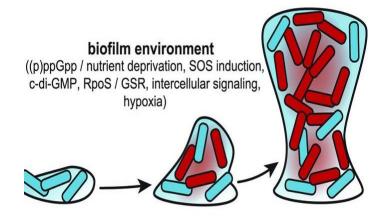
UBI PUS IBI EVACUA

Chronic –recurring infections


Surgery: Scars- morbidity -mortality

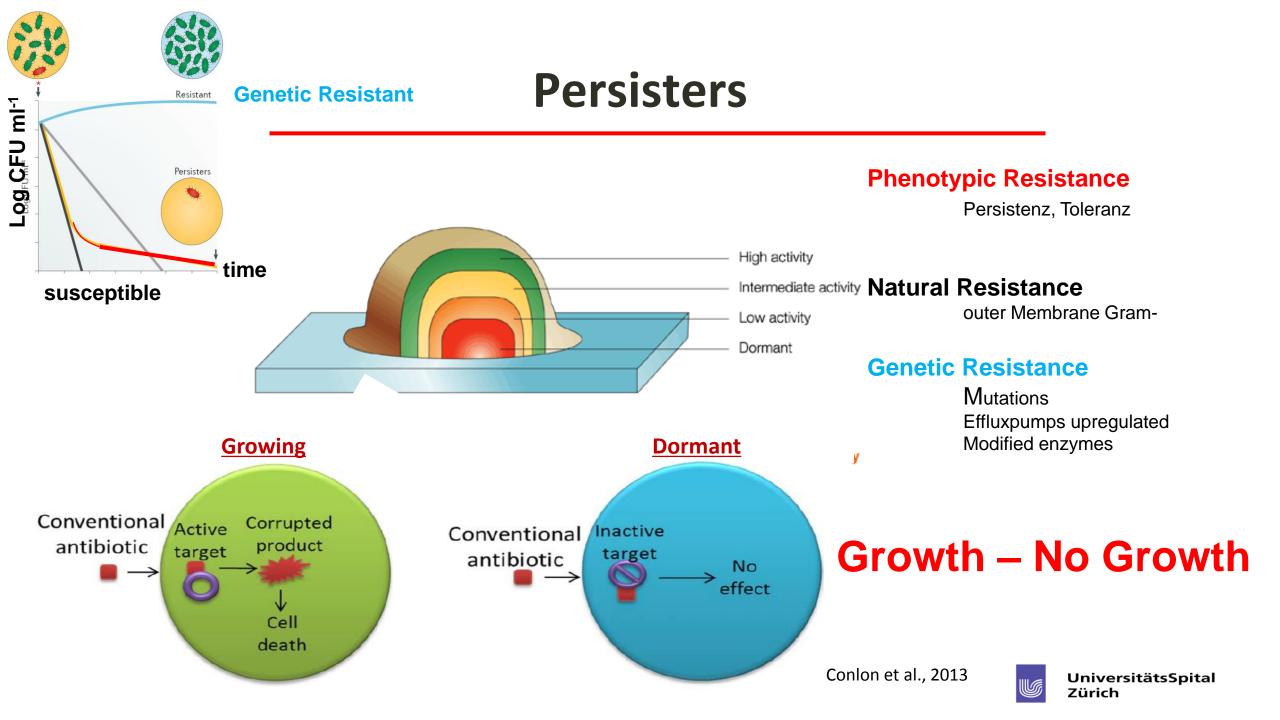

- Removal of infected tissue -foreign body
 - » Therapy of *Staphylococcus aureus* Bacteremia Associated with a Removable Focus of Infection, PAUL B. IANNINI, M.D.; KENT CROSSLEY, M.D. 1976

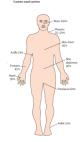

Antibiotics: Long treatment duration, i.v.


- Endocarditis: >4 weeks
 - 1943: Mortality 100% -now with antibiotic therapy 30%
- Osteomyelitis/ Orthopedic implant associated infections: 6-12 weeks
- ? How long is long enough? What is most effective? Carried Sersitäts Spital

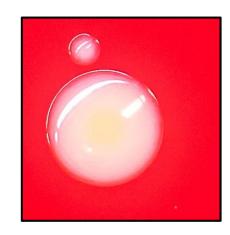
Persisters = metabolically inactive bacteria

Zürich



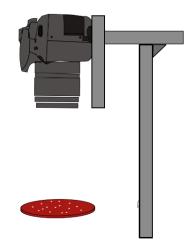

E.coli, Tbc, S.aureus, Salmonella ssp.

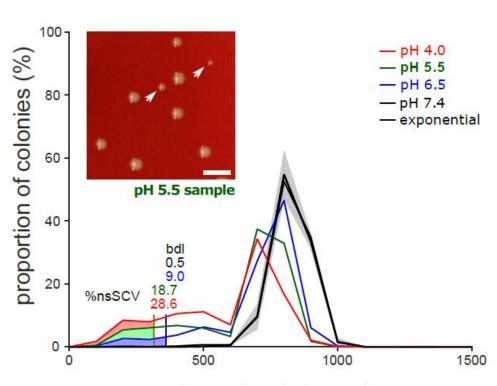
Stressors: reactive oxygen species (ROS), lack in nutrients, low pH, antibiotics

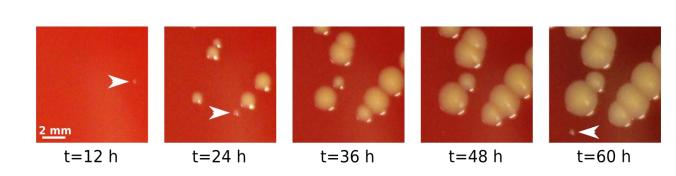


Small Colony Variants (SCV) in clinical isolates:

Challenging detection – reduced growth

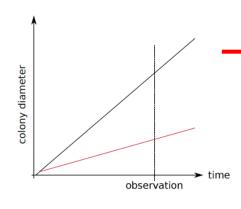

Phenotype switching, revert to normal colony phenotyp


Indispensable feature for recurrent infections

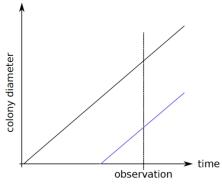

In contrast to stable SCV - genetically determined

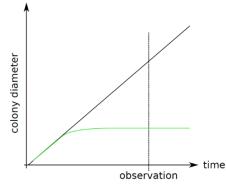
Electron transport-defective SCVs, auxotroph for hemin, menadione, thymidine (hemB, menD, thyD)

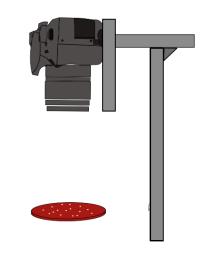
Heterogenous colony size

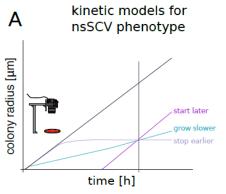

Long tailed size distribution

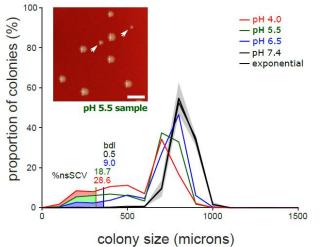
colony size (microns)

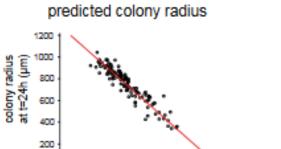

- semi-automated colony growth analysis
- analyzing time lapse movies with MATLAB for growth rate and lag-time

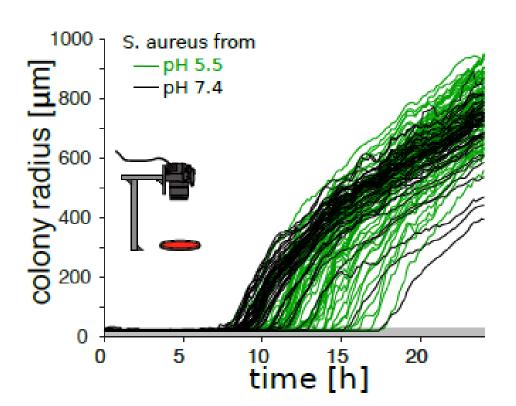

Heterogeneity?


1. Difference in **growth rate**? <u>Do they grow slower?</u>

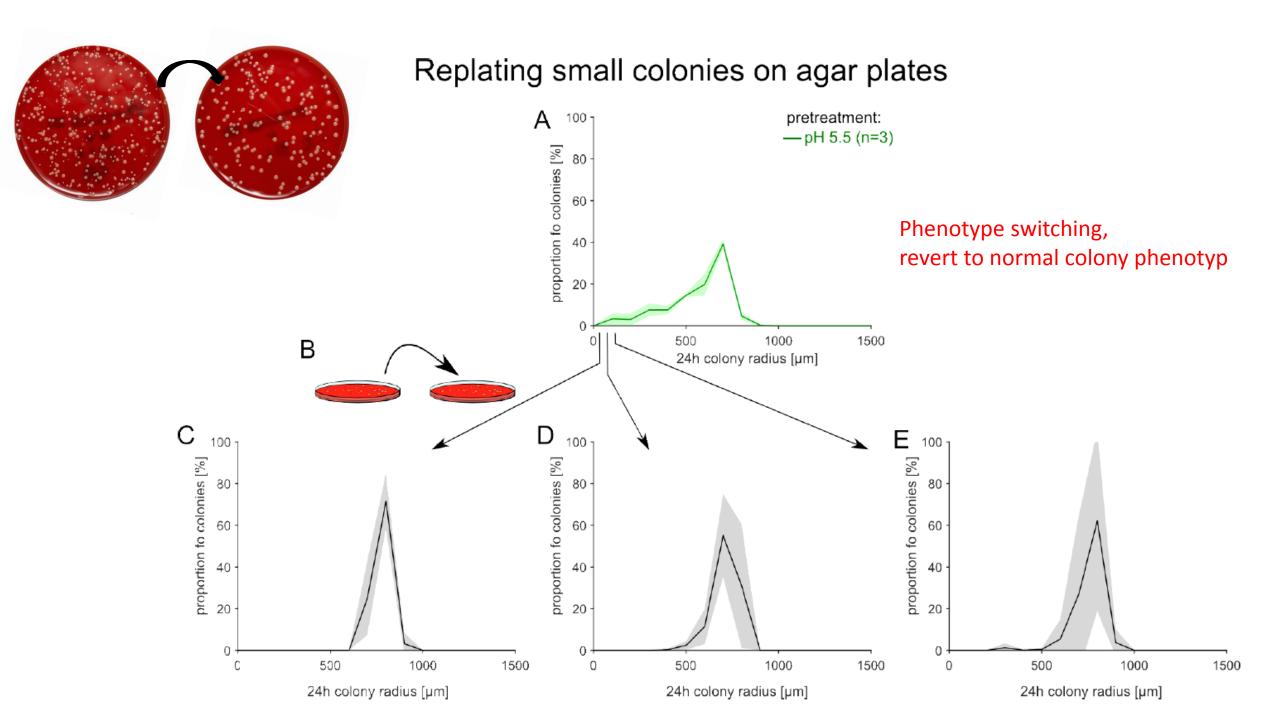

2. Difference in growth start? Do they start later?

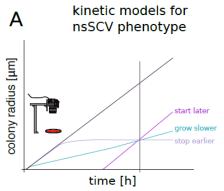

3. Difference in **growth end**? Do they stop growing?



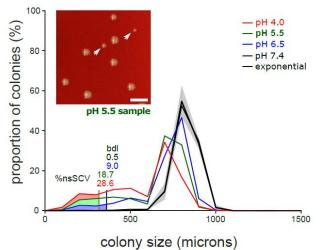

SCV formation is a consequence of a late emergence of colonies

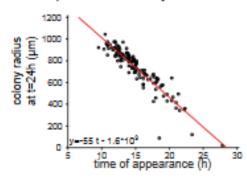
time of appearance

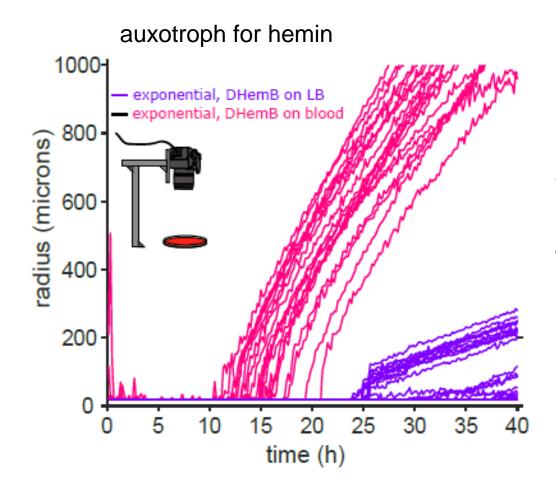

colony growth curves from liquid culture



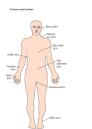
Nonstable SCVs are bacteria with long lag

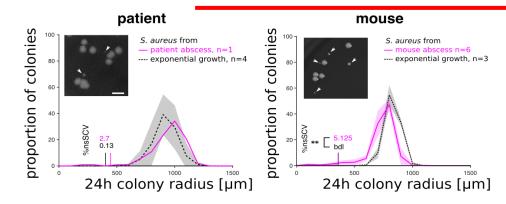

Nature Communications 2018

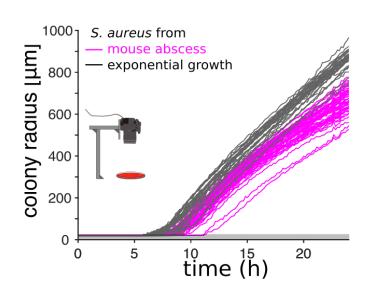




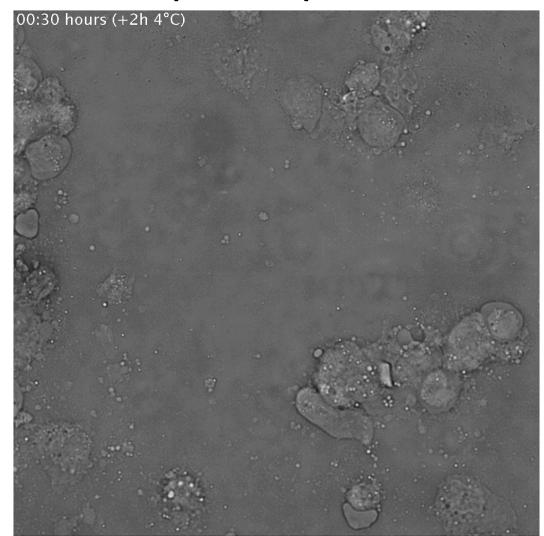
SCV formation is a consequence of a late emergence of colonies


time of appearance predicted colony radius


Stable SCVs are bacteria which grow slower

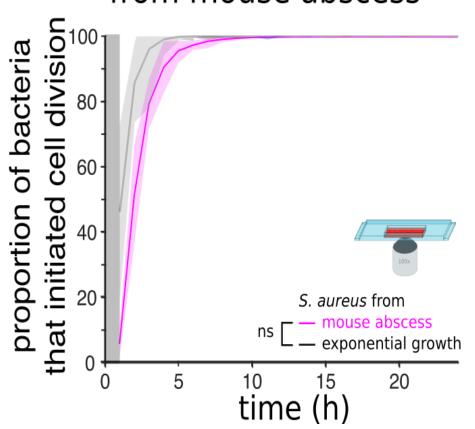


S. aureus recovered from human and murine abscesses

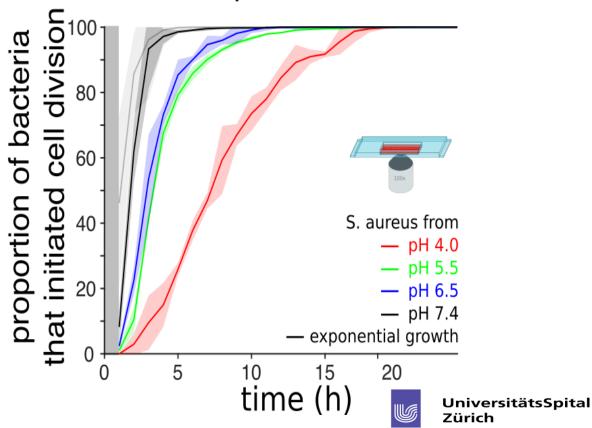


colony growth curves from mouse abscess

Heterogeneous and lag

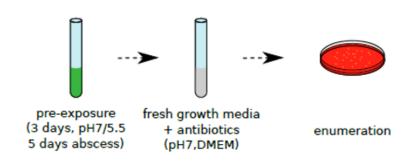


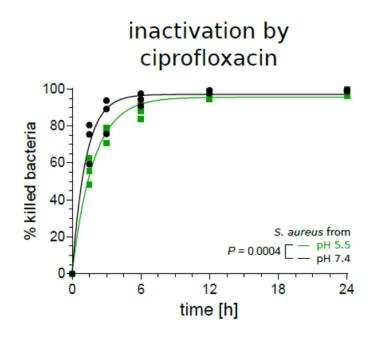
Microscopic timelapse

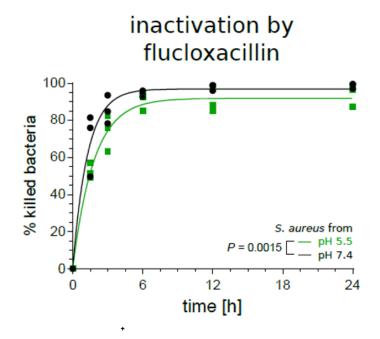


heterogeneous colony size - delay in the first division at the level of single cells

single cells' first divisions from mouse abscess

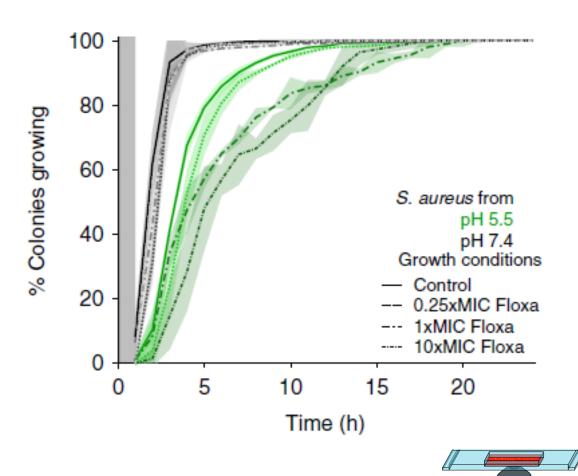


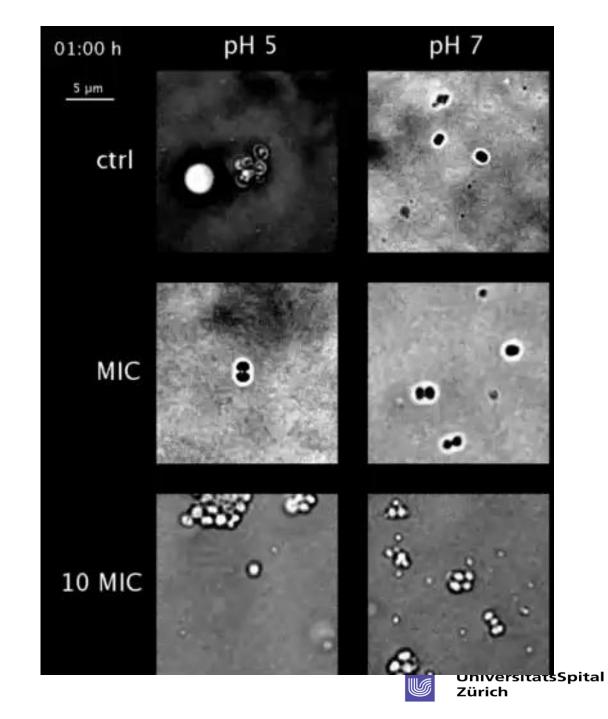

single cells' first divisions from liquid culture

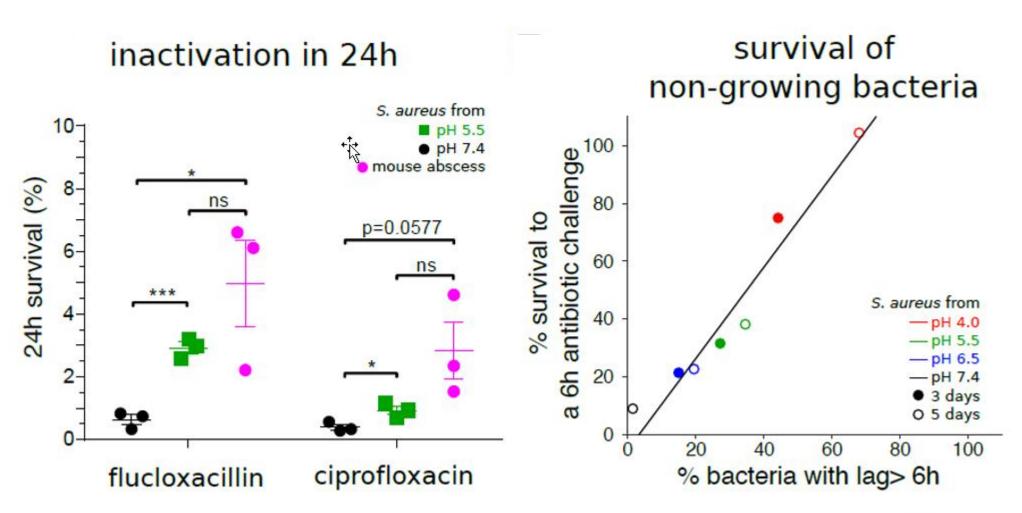


Non dividing bacteria withstand antibiotics

persister assay

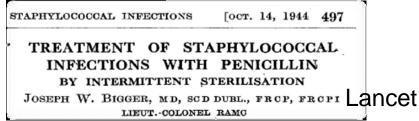





lag time of individual bacterial cells

Single cells' first divisions from liquid culture

The proportion of bacteria in lag phase correlates with the proportion of bacteria surviving antibiotics



How do S. aureus withstand antibiotics?

Resistance - MRSA Susceptible

- 1. 'Location':
 - in 'privileged' sites such as abscess, intracellular, biofilm
 - -> AB do not reach bacteria, milieux
- · 2. 'Growth'
 - Stationary bacteria
 - Persisters = metabolically inactive

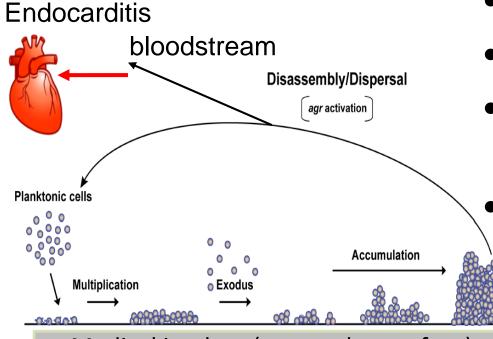
Recurrence: Weeks - years after apparent cure

CORRESPONDENCE

against medical advice)

Staphylococcus aureus Reactivation Osteomyelitis after 75 Years

N Engl J Med 2012; 366:481-482 | February 2, 2012 | DOI: 10.1056/NEJMc1111493


Daptomycin versus Standard Therapy for Bacteremia and Endocarditis Caused by Staphylococcus aureus -open-label, randomized trial

Reason for Failure	Daptomycin (N=120)	Standard Therapy (N = 115)	P Value†	
	no. (%)			
Overall	67 (55.8)	67 (58.3)		
Microbiologic failure, clinical failure, or both	23 (19.2)	15 (13.0)	0.22	
Microbiologic failure‡	19 (15.8)	11 (9.6)	0.17	
Clinical failure without microbiologic failure	4 (3.3)	4 (3.5)	1.00	
Adverse event	8 (6.7)	17 (14.8)	0.06	
Receipt of nonstudy antibiotics that could have influenced outcome	20 (16.7)¶	16 (13.9)	0.59	
Death	13 (10.8)	13 (11.3)	1.00	
No blood obtained for culture**	9 (7.5)	12 (10.4)	0.50 Fowl	
Patient could not be evaluated (e.g., withdrew consent, left hospital	9 (7.5)	14 (12 2)	2006	

The NEW ENGLAND
JOURNAL of MEDICINE

Staphylococcus epidermidis

Medical implant (pacemaker surface)

Adapted from Paharik and Horswill Microbiol Spectr. 4(2) 2016

- Gram-positive coagulase-negative staphylococcus
- Commensal: skin and mucosa
- Less virulent than S. aureus (less toxins and aggressive exoenzymes)
 - Opportunistic pathogen:
 - Nosocomial bacteraemia
 - Biofilm associated infections
 - Major cause of medical device associated infections
 - Prosthetic valve infections
 - Pacemaker associated infections

Staphylococcus epidermidis pacemaker pocket infection

Augmentin

Week

Tacemaker nocke

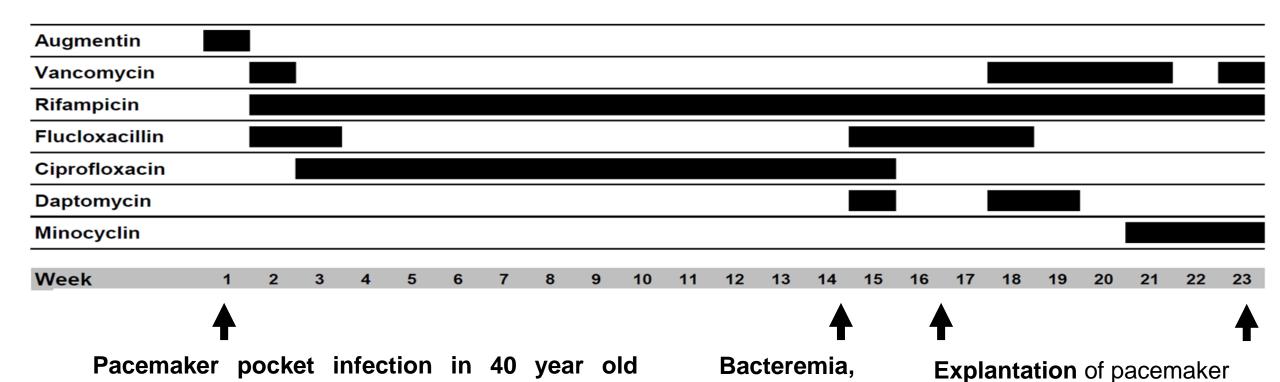
Pacemaker pocket infection in 40 year old male, debridement of the pacemaker pocket, vacuum assisted closure therapy (VAC), antibiotics

Staphylococcus epidermidis pacemaker pocket infection

Augmentin

Erreger	Total n = 28'451
Staphylococcus aureus	18 %
Staphylococcus, koagulase-negative	13 %
Enterococcus spp	12 %
Escherichia coli	9 %

Week

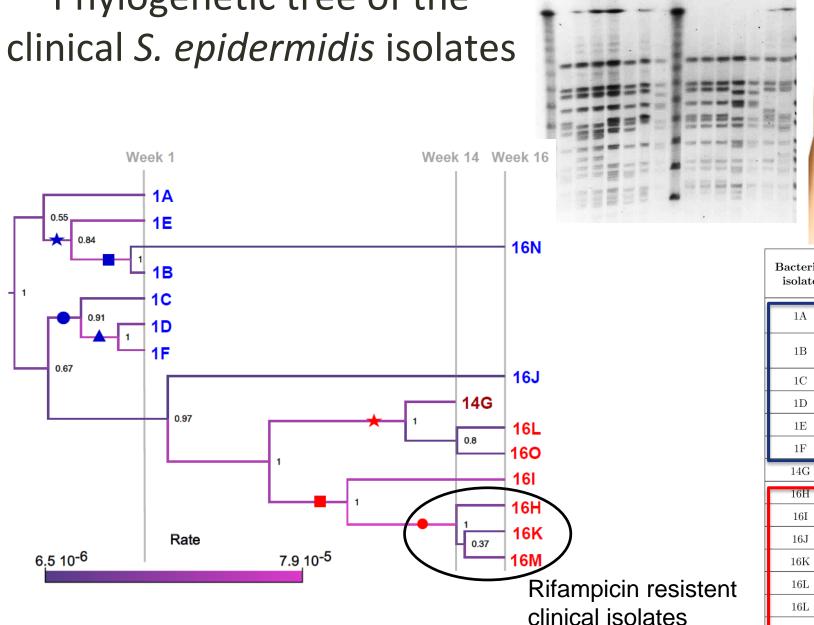


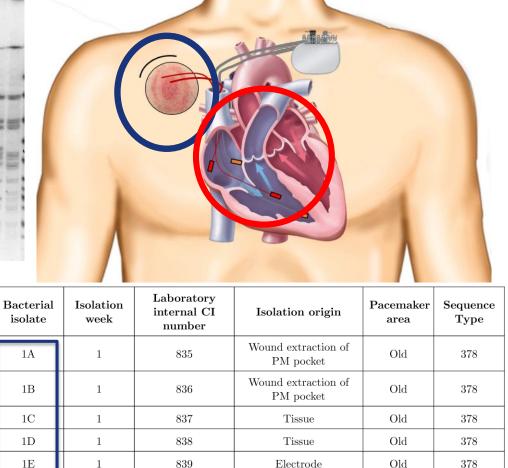
Pacemaker pocket infection in 40 year old male, debridement of the pacemaker pocket, vacuum assisted closure therapy (VAC), antibiotics

Staphylococcus epidermidis pacemaker associated endocarditis

male, debridement of the pacemaker pocket,

vacuum assisted closure therapy (VAC), antibiotics




vegetation in

echocardiography

The 'Endocarditis Team'

Phylogenetic tree of the

Electrode

Electrode

Blood

Aggregate

Aggregate

Ventricle electrode

Atrial electrode

Atrial electrode

Ventricle electrode

378

378

378

378

378

378

378

378

378

378

Old

New

New

New

New

New

New

New

839

841

753

842

848

849

788

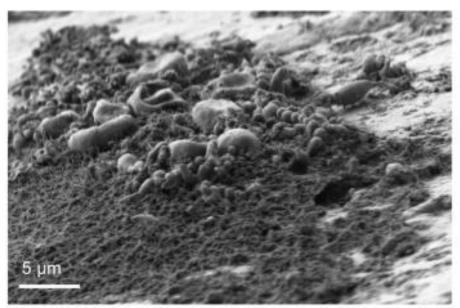
792

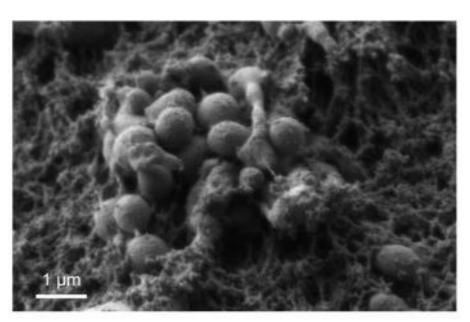
797

1E

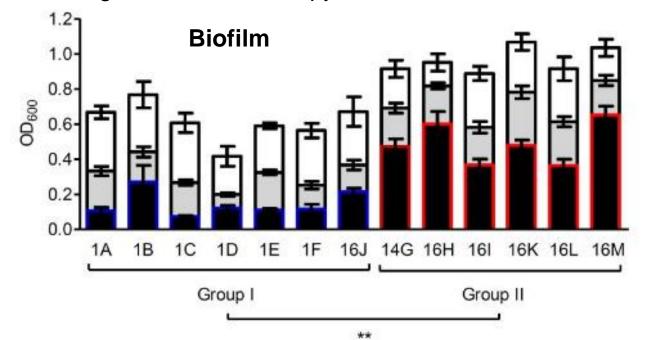
1F

16M

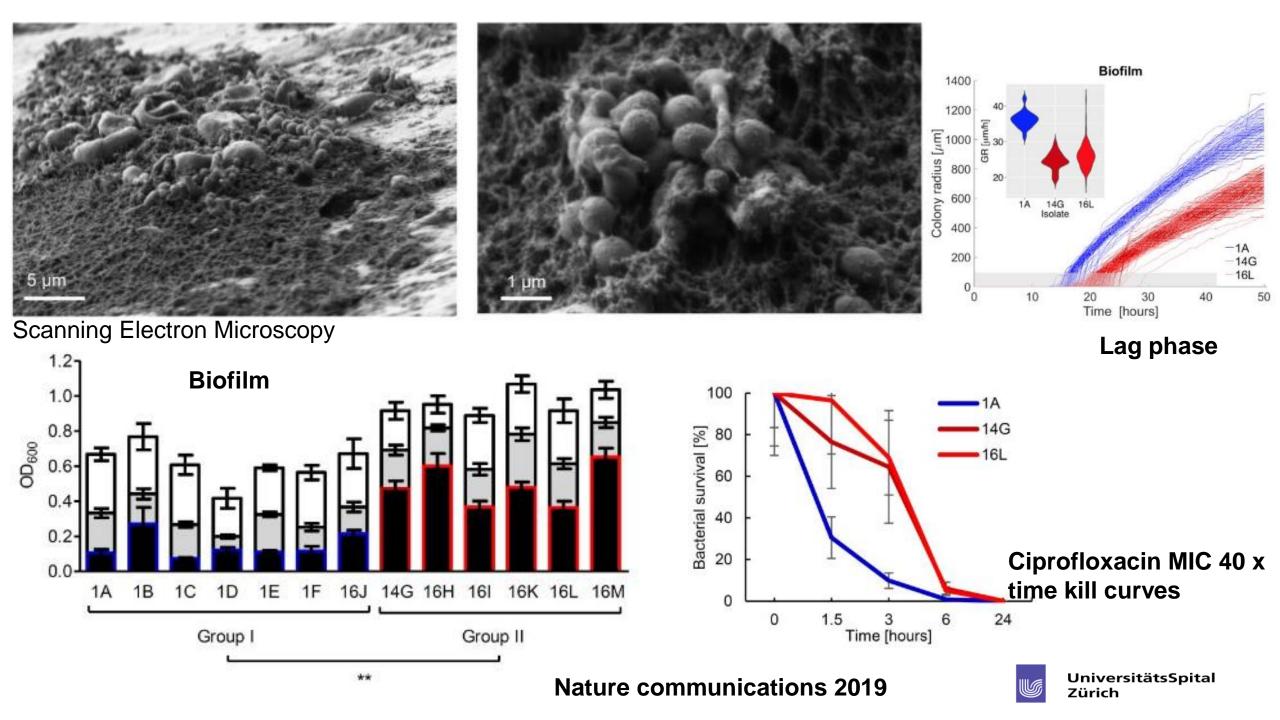

14


16

16

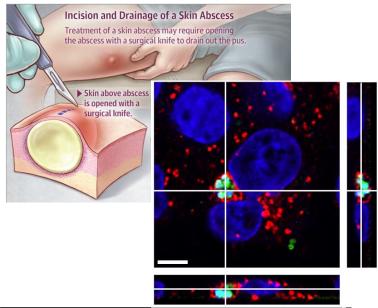

16

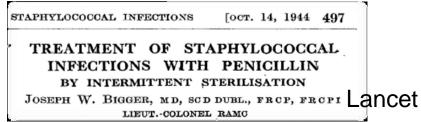
16



Scanning Electron Microscopy




Nature communications 2019



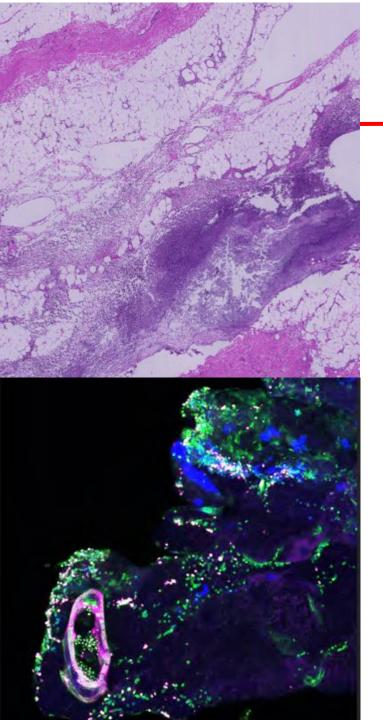
How do S.epidermidis withstand antibiotics?

Resistance - rifampicin Susceptible

- 1. 'Location':
 - in 'privileged' sites such as abscess, intracellular, biofilm
 - -> AB do not reach bacteria, milieux
- 2. 'Growth'
 - Stationary bacteria
 - Persisters = metabolically inactive
 - in host evolution

Invasive Group A Streptococcal Disease

Necrotizing fasciitis


Global burden of disease / year: 663,000 invasive infections

- 163,000 deaths
- streptococal toxic shock syndrome
- necrotizing fasciitis
 Rapidly-progressive, destructive infection of the soft tissues.

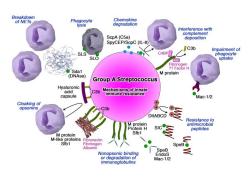
Requires extensive surgical debridement, intravenous antibiotics, and ICU care.

High lethality (~35%)

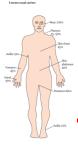
Why does treatment fail?

Rapidely progressive disease

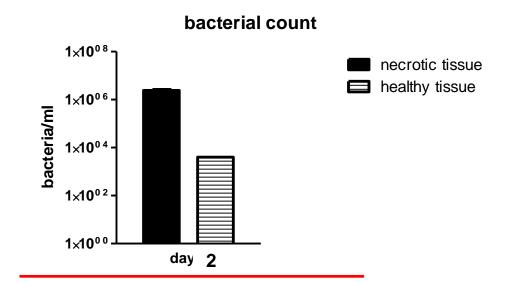
Doc:

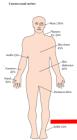

quick diagnosis, surgery + 'wright' antimicrobials

Patient:


Delay in presentation, necrotic tissue

Bug:


- Extracellular bacterium, 100% peni susceptible
- Many bacteria
- Virulence factors
- Biofilms



Necrotizing fasciitis - 2 days ceftriaxone

Ceftriaxone

Group A Streptococcus - Streptococcus pyogenes

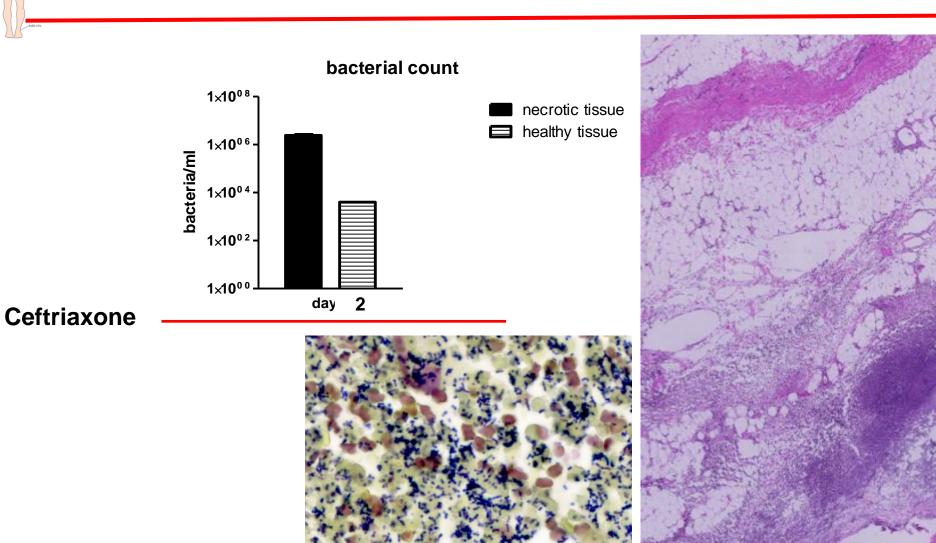
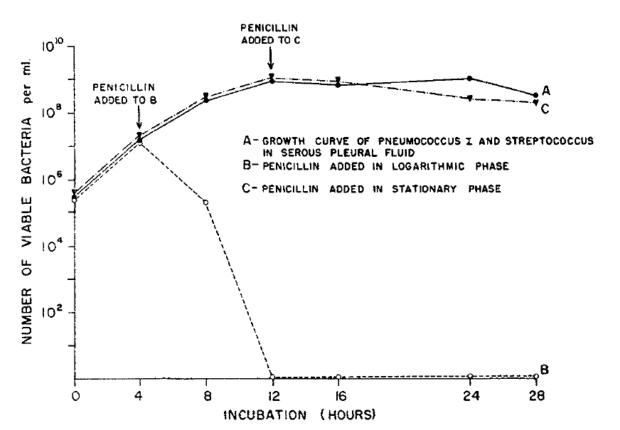


TABLE II

Effect of the Size of the Inoculum on the Curative Dose of Penicillin G in White Mice Infected with a Group B β-Hemolytic Streptococcus*

	No. of organisms inoculated;	Penicillin	Survived	Died	Curative dose (CDa) of penicillin G ± standard errors,
		mg./kg.			mg./kg.
		2,048	20	0	
		1,024	18	2	
Group 1	2,235,000	512	9	11	424±52
		256	7	13	
		128	1	19	
		0	0	10	
		1,024	20	0	
	1 . 1	512	14	6	
	1	256	5	15	
Group 2	180,000	128	0	20	339±45
		64	1	19	
		32	1	19	
		0	0	10	
		256	19	1	
		128	7	13	
Group 3	1,750	64	2	18	139±51**,§
-	(estimated)	32	1	19	
		16	5	15	
		0	1	9	
		64	19	1	
		32	15)
		16	18	. 5 2	
Group 4	17¶	8	11	9	2.8±1.1
-		4	14	6	
		2	11	9	
		1	7	13	
		0	1 1	9	

The mice (CFW strain) were inoculated intraperitoneally with an appropriate dilution of a 3 hour culture in blood-broth, and treated immediately with a single intramuscular injection of penicillin G in aqueous solution. The number of organisms indicated in the table is actually the number of bacterial clumps, determined by plate counts. The number of organisms per clump in the original culture averaged 2.0.



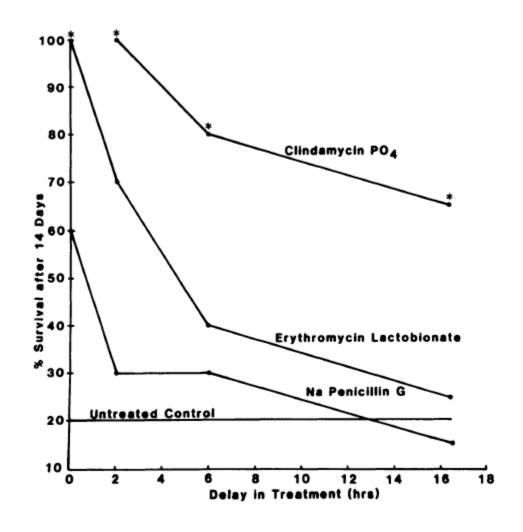
Curative dose of penicillin increases with the size of the inoculum, and increases also with the age of the infection (paradoxical more-drug-kills-less Eagle effect)

High inoculum – stationary

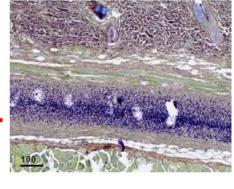
Text-Fig. 3. Action of penicillin on type I pneumococci and beta hemolytic streptococci contained in thin serous fluid collected from pleural cavities of rats with experimental streptococcal pneumonia. The pneumococci were added to the fluid at the start of each experiment.

J Infect Dis. 1993 Jun;167(6):1401-5.

Penicillin-binding protein expression at different growth stages determines penicillin efficacy in vitro and in vivo: an explanation for the inoculum effect.


Stevens DL1, Yan S, Bryant AE.

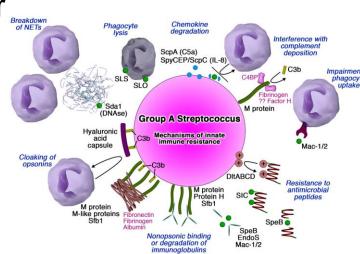
Once there is a high inoculum of Strep and it reaches the stationary phase of growth, Strep does not express penicillin-binding proteins and thus is less susceptible to betalactams.



The Eagle effect revisited: efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis.

Stevens DL1, Gibbons AE, Bergstrom R, Winn V.

Antibiotics: Eliminate + Disarm



Cell wall active antibiotic:

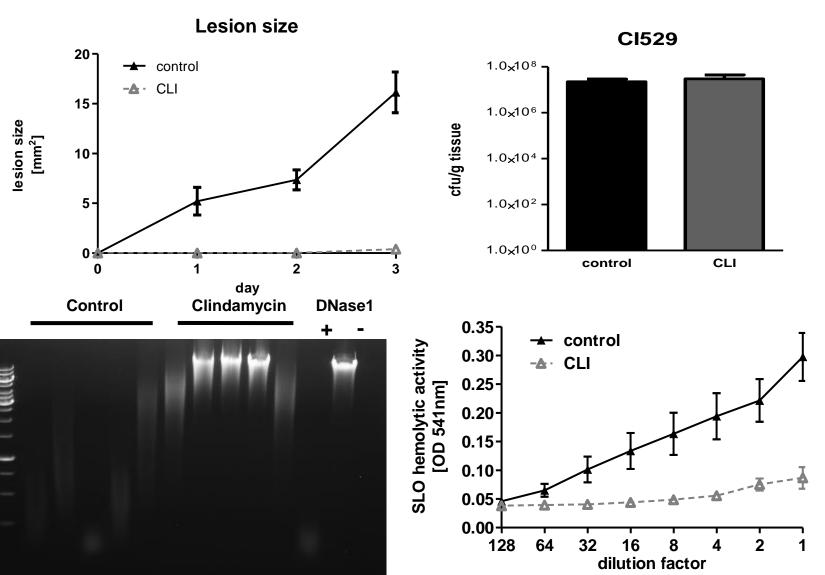
- Penicillin: 100% susceptibility
- Penicillin should be given as quickly as possible

Protein synthesis inhibitor:

- Clindamycin
 - clindamycin is not affected by the inoculum size or stage of bacterial growth
 - suppressor of bacterial toxin synthesis
 - Sriskandan et al., J Antimicrob Chemother. 1997
 - Mascini et al., Int J Antimicrib Agents 2001
 - Goscinski G et al., Scand J Infect Dis 2006

Reality

Observational prospective surveillance of iGAS in Victoria, Australia (4.9mio), 3/2002-8/2004.


Table 2. Clinical Manifestations and Treatment of 84 Patients
With Severe Invasive Group A Streptococcal Disease

Manifestation	No. of Patients	No. (%) Treated With Clindamycin	No (%) Treated With IVIG ^a
NF + STSS	20	20 (100)	7 (35)
NF + septic shock	1	1 (100)	0
NF alone	8	7 (88)	1 (13)
STSS alone	29	17 (59)	6 (21)
Septic shock alone	16	6 (38)	0
Severe cellulitis	10	2 (20)	0
Total severe iGAS	84	53 (63)	14 (17)

pital

Reduced virulence ... in vivo

NEJM Journal Watch

Neil M. Ampel, MD reviewing Andreoni F et al. J Infect Dis 2017 Jan 15.

In an experimental model using mice and human tissue, therapeutic doses of clindamycin were found to inhibit key virulence factors in group A streptococci.

High-dose penicillin plus surgical debridement has been the standard therapy for necrotizing fasciitis caused by group A streptococci (GAS). Although adding clindamycin (CLI) is strongly recommended because of its ability to inhibit bacterial protein synthesis, this approach has never been tested in a prospective clinical trial, nor is such a trial feasible.

Now, Swiss and French investigators report the possible benefits of clindamycin therapy against GAS invasive infections with both CLI-susceptible and CLI-resistant isolates in an in vivo murine model and in tissue from a patient with GAS necrotizing fasciitis. In the mouse model, addition of therapeutic doses of clindamycin was associated with decreases in the virulence factors DNase and streptolysin O, and in the size of areas of skin necrosis, despite minimal reductions in bacterial concentrations. These effects were seen even when the infecting strain of GAS was clindamycin resistant. When subtherapeutic doses of clindamycin were given, other virulence factors that mimicked the more virulent animal-passaged GAS phenotype were seen to increase. In the human tissue samples, DNase activity was completely abolished after 2 days of adjunctive clindamycin treatment, although high concentrations of bacteria persisted.

COMMENT

This interesting study provides evidence favoring addition of clindamycin to the standard treatment of GAS-associated necrotizing fasciitis. The authors note that the results support the use of early, high-dose clindamycin in combination with a β-lactam antibiotic and surgical debridement and caution that subtherapeutic clindamycin doses may actually result in a more virulent organism.

Andreoni F. et al., J Infect Dis. 2016

Reality

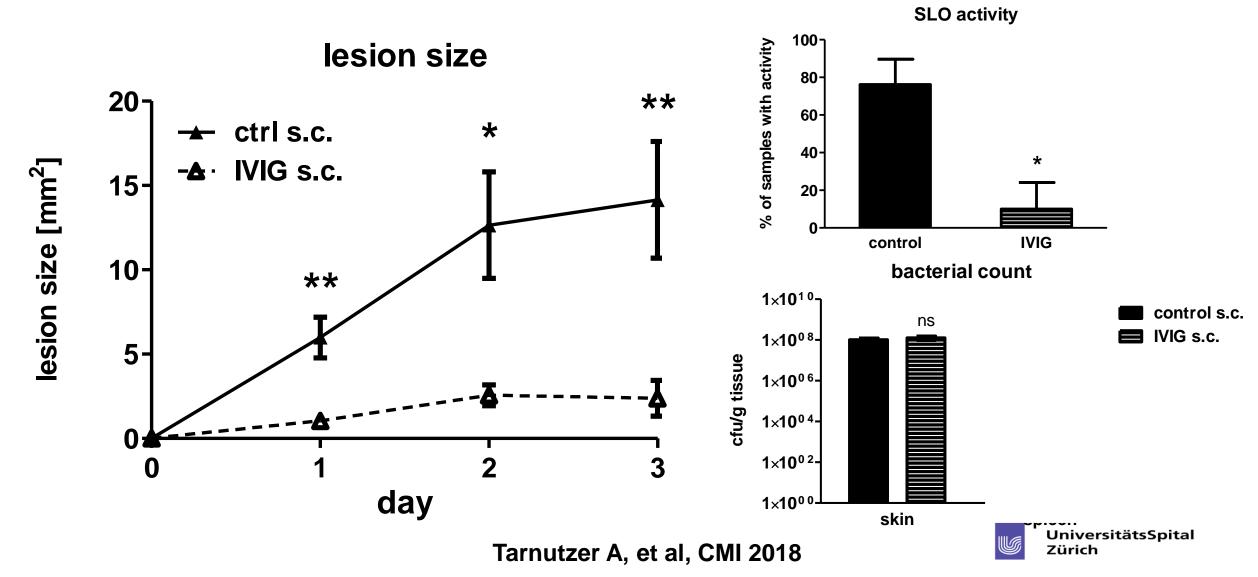
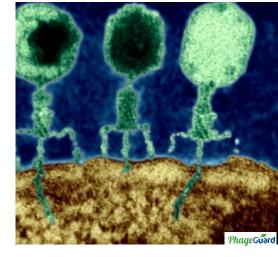

Observational prospective surveillance of iGAS in Victoria, Australia (4.9mio), 3/2002-8/2004.

Table 2. Clinical Manifestations and Treatment of 84 Patients With Severe Invasive Group A Streptococcal Disease

Manifestation	No. of Patients	No. (%) Treated With Clindamycin	No (%) Treated With IVIG ^a
NF + STSS	20	20 (100)	7 (35)
NF + septic shock	1	1 (100)	0
NF alone	8	7 (88)	1 (13)
STSS alone	29	17 (59)	6 (21)
Septic shock alone	16	6 (38)	0
Severe cellulitis	10	2 (20)	O
Total severe iGAS	84	53 (63)	14 (17)

IVIG inhibit VF activity + reduce lesion size


Bacteriophages could be a resource for fighting drug-resistant bacterial infections.

MICROBIOLOGY

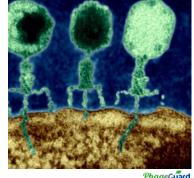
Phage therapy gets revitalized

The rise of antibiotic resistance rekindles interest in a century-old virus treatment.

5 JUNE 2014 | VOL 510 | NATURE

- Virus
- Lytic
- Resistances Cocktails
- FDA approved for treatment of Listeria monocytogenes contamination in food industry (poultry & cattle)
- Aquaculture & sewage treatment

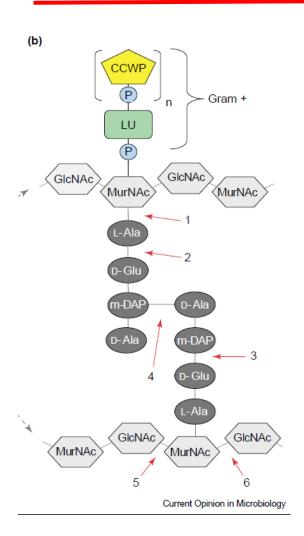
PHAGE THERAPY BACK TO THE FUTURE!


Name of companies	Country	Web	Notes		
AmpliPhi BioSciences Corporation	Australia	http://www.ampliphibio.com	Clinical trials against infections of the group « ESKAPE » on humans and among pets and livestock animals for MRSA and PYO		
Biophage Pharma Inc	Canada	http://www.biophagepharma.net/ index.php/en/	Biosensor division: dev. & commercialization of simple, accurate, highly sensitive biosensors based on phages / Therapeutic division dev. Phage therapies for human health.		
Pherecydes Pharma	France	www.pherecydes-pharma.com	Development of phagetherapies for human health. EU funded PHAGOBURN clinical trial		
Gangagen Inc.	India	www.gangagen.com	Developments of products against MRSA and PYO infections		
Biotech Laboratories	Israel	www.biotec.com/index.asp	Rapid detection of rifampicine resistance in sputum positive for M.tb / Rapid detection of BK in human sputum		
Micreos Food Safety	Netherlands	www.ebifoodsafety.com	Protection against LISTER in food preparation		
CheilJedang Corp.	South Korea	www.cjj.co.kr	To protect chicken feed from Salmonella gallinarum et pullorum		
Phico Therapeutics	UK	www.phicotherapeutics.co.uk	Bacteriophages for several bacteria : Listeria monocytogenes , M. tuberculosis), MRSA, MSSA		
Novolytics	UK	www.novolytics.co.uk	Gels /MRSA / C. Difficile and products to decrease nasal portage of MRSA /gels for skin infections and medical devices		
Biocontrol	UK	www.biocontrol-ltd.com	Cinical trials on otitis to treat PYO infections		
Omnilytics	USA	www.phage.com	Development and use of lytic bacteriophages against tomato wilt disease		
Intralytix	USA	www.intralytix.com	Decontamination and food additive against Escherichia coli O157:H7 in food preparation /Food additive against contamination by LISTER of uncooked food		
Viridax Inc.	USA	www.viridax.com	Development of products against staphylococcal infections.		
New Horizons Diagnostics Corporation	USA	http://www.nhdiag.com/phage.shtml	Enzybiotics: Phage Associated Enzymes (PAE) that act as antibiotics		

AMR CONTROL **2015**

UniversitätsSpital Zürich

PHAGE THERAPY BACK TO THE FUTURE!

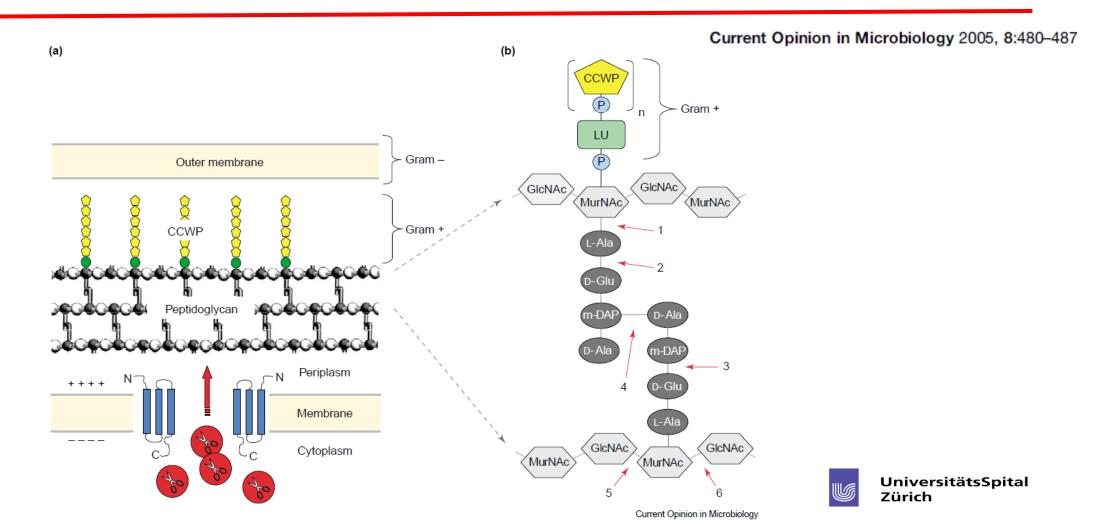


PhageGuard

- Phages used to transport and target antibiotics into bacteria
 - » Yacoby et al, 2006, AAC Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages
- Rapid resistance development

- Phage lysins = cell wall hydrolases, bind to peptidoglycans
 - -> disrupt cell walls of Gram pos bacteria

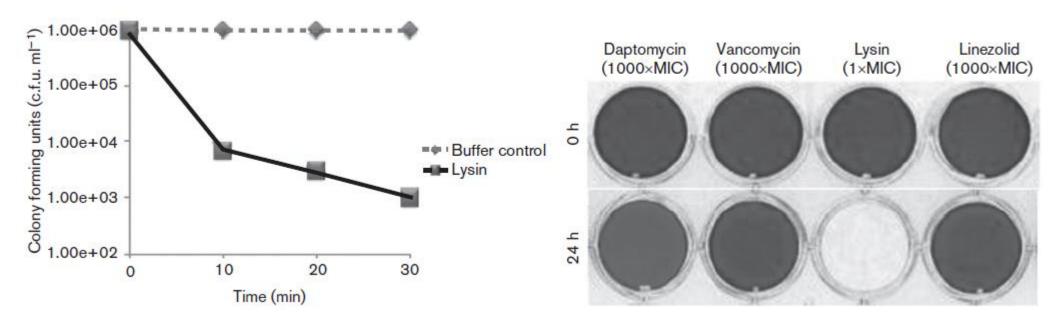
Endolysins

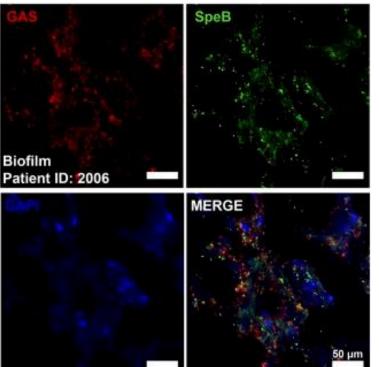


- Bacteriophage endolysins (=peptidoglycan hydrolase enzymes) are enzymes which cleave essential bonds in the peptidoglycans of bacterial cell wall for phage progeny release
- can cause "lysis from without."
- Endolysins can act synergistically with antibiotics by resensitizing bacteria to non-susceptible antibiotics
- No strains resistant to phage endolysin

Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme

Daniel Nelson*†, Lawrence Loomis‡, and Vincent A. Fischetti*

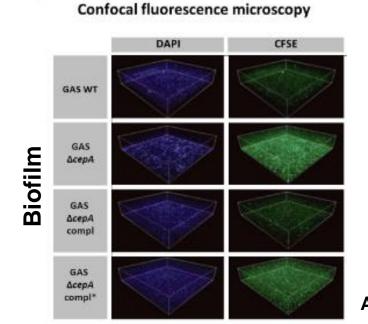


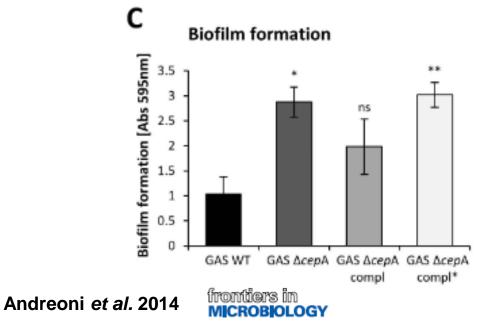

Table 1. Characteristics of lysins effective against antibiotic-resistant Gram-positive bacteria

Antibiotic-resistant bacteria	Lysin	Efficacy model	Unique characteristics	Reference
C. difficile (B1/NAP1 strain)	CD27L	In vitro	Can be expressed in <i>Lactococcus lactis</i> for gastrointestinal delivery	Mayer et al. (2008)
E. faecalis, E. faecium [vancomycin-resistant (VRE)]	PlyV12	In vitro	Broad-spectrum lysin; also active against groups A and B streptococci	Yoong et al. (2004)
Staphylococcus aureus [meticillin- (MRSA), vancomycin- (VRSA) and vancomycin intermediate- (VISA) resistant]; biofilm-forming Staphylococcus epidermidis, strain RP62A	ClyS, LysK	Murine sepsis (ClyS), murine nasal (ClyS, LysK) and murine skin decolonization (ClyS)	ClyS: bioengineered chimeric lysin; resensitizes MRSA to oxacillin LysK; catalytic domain alone is active	Becker et al. (2008); Horgan et al. (2009 Daniel et al. (2010); Fenton et al. (2010a); Pastagia et al. (2011)
Streptococcus agalactiae (streptomycin-resistant)	PlyGBS	Murine pharyngeal and murine vaginal decolonization	DNA mutagenesis increases lysin activity	Cheng et al. (2005); Cheng & Fischetti (2007)
Streptococcus pneumoniae (penicillin-resistant)	Cpl-1, Pal	Rat endocarditis and rat meningitis (Cpl-1); murine sepsis (Cpl-1, Pal), murine pneumonia (Cpl-1) and murine nasal (Cpl-1) decolonization	Dimerization increases half-life	Loeffler et al. (2001, 2003); Jado et al. (2003); Entenza et al. (2005); McCulle et al. (2007); Grandgirard et al. (2008 Witzenrath et al. (2009); Resch et al. (2011)
Streptococcus pyogenes (streptomycin-resistant)	PlyC	Murine pharyngeal decolonization	Pre-infection dose prevents subsequent colonization	Nelson et al. (2001)

Journal of Medical Microbiology 62

Lysins: pathogen-directed anti-infectives


GAS make biofilm



JCI Insight. 2016 Jul 7; 1(10): e87882.

SpyCEP reduces biofilm

Antibiotic activity against planktonic and biofilm-embedded Streptococcus pyogenes

Table 1. Antimicrobial susceptibility of Streptococcus spp. by Etest and microcalorimetry in planktonic and biof

				MIC (mg/L)			
	S. ag	palactiae (ATCC 13	813)	S. pyogenes (ATCC 19615)			
		MHIC/MBBC			MHIC/MBBC		
Antimicrobial	Etest	planktonic	biofilm	Etest	planktonic	biofilm	
Fosfomycin	64	64	>1024	64	128	>1024	
Rifampicin	0.064	0.128	1024	0.023	0.064	256	
Benzylpenicillin	0.047	0.064	64	0.016	0.016	32	
Daptomycin	0.25	0.5	64	0.23	0.125	16	
Gentamicin	3	4	8	1	4	4	
Levofloxacin	0.75	1	1024	0.38	0.5	1024	

Table 3. MBEC and FICI_{MBEC} of antibiotic combinations against *Streptococcus* spp. biofilms evaluated by sonication

	S. agala	ctiae	S. pyogenes		
	(ATCC 13813)		(ATCC 19615)		
Antimicrobial	MBEC (mg/L)	FICI _{MBEC}	MBEC (mg/L)	FICI _{MBEC}	
Rifampicin	2048		512		
Benzylpenicillin	2048		512		
Gentamicin	8		4		
Rifampicin + gentamicin	8+1	0.129 (S)	≤4+1	≤0.258 (S)	
Benzylpenicillin + gentamicin	4+0.5	0.064 (S)	≤2+0.25	≤0.066 (S)	

J Antimicrob Chemother 2017; 72: 3085–3092

APPLE CIDER VINEGAR

- 1. Mix 1-3 tsp ACV in 1 glass of warm water.
- 2. Gargle with this solution several times a day for 2 to 3 days.

Peel a fresh garlic clove, slice it in half and suck on a piece like a candy.

SALT WATER

- 1. Add ½ tsp salt to 1 cup of water.
- 2. Gargle with this solution for a few seconds, then spit it out.

Fresh Garlic Extract Enhances the Antimicrobial Activities

Ajoene, a sulfur-rich molecule from garlic

- prevents bacteria from secreting the toxin rhamnolipid which destroys neutrophils
- inhibits genes controlled by quorum sensing
 - promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections.
 - renders *P. aeruginosa* sensitive to tobramycin, respiratory burst and phagocytosis by PMNs

Microbiology, 2005 Dec:151(Pt 12):3873-80.

Fresh Garlic Extract Enhances the Antimicrobial Activities

Garlic contains so little ajoene that you would need to eat around 50 a day to achieve the desired effect.

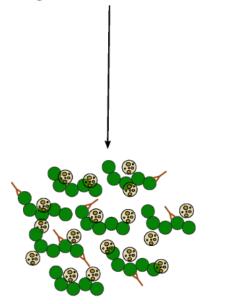
Credit: @ Stefano Pareschi / Fotolia

ScienceDaily

Microbiology. 2005 Dec;151(Pt 12):3873-80.

Ajoene, a sulfur-rich molecule from garlic

- prevents bacteria from secreting the toxin rhamnolipid which destroys neutrophils
- inhibits genes controlled by quorum sensing
 - promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections.
 - renders *P. aeruginosa* sensitive to tobramycin, respiratory burst and phagocytosis by PMNs


pathogen directed therapy

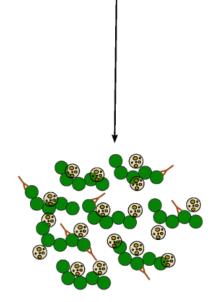
Antibiotics, antimicrobials and antibodies

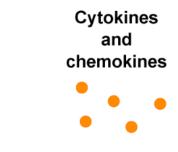
direct killing of pathogen disarming bacterial virulence factors

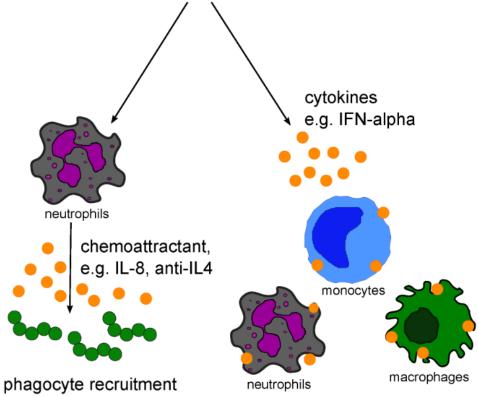
pathogen clearance

Adapted from Nadia Keller

pathogen directed therapy


host directed therapy


Antibiotics, antimicrobials and antibodies


direct killing of pathogen disarming bacterial virulence factors

pathogen clearance

direct effect on immune response

Adapted from Nadia Keller

phagocyte boosting

host directed therapy

- Activation/boosting of eukaryotic effector mechanisms
 - increase neutrophil numbers
 - antimicrobial peptides,
 - nitric oxide,
 - reactive oxygen species

kill the bacteria

Vitamin D, HIF-1α inducers, IL-4, Interferon α

Vitamin D

potent inducer of antimicrobial peptides

link between vitamin D deficiency and the recurrence of GAS tonsillopharyngitis.

Table 2
Results of multiple logistic regression analysis of recurrent GAS tonsillopharyngitis

Variable	OR (95% CI)	p-Value
Male gender	1.15 (0. 21-6.38)	0.86
Age	0.97 (0. 91-1.03)	0.35
CRP >3 mg/l	1.57 (1.13-2.19)	0.007
Serum 25(OH) vitamin D <20 ng/ml	1.62 (1.51-1.76)	0.001

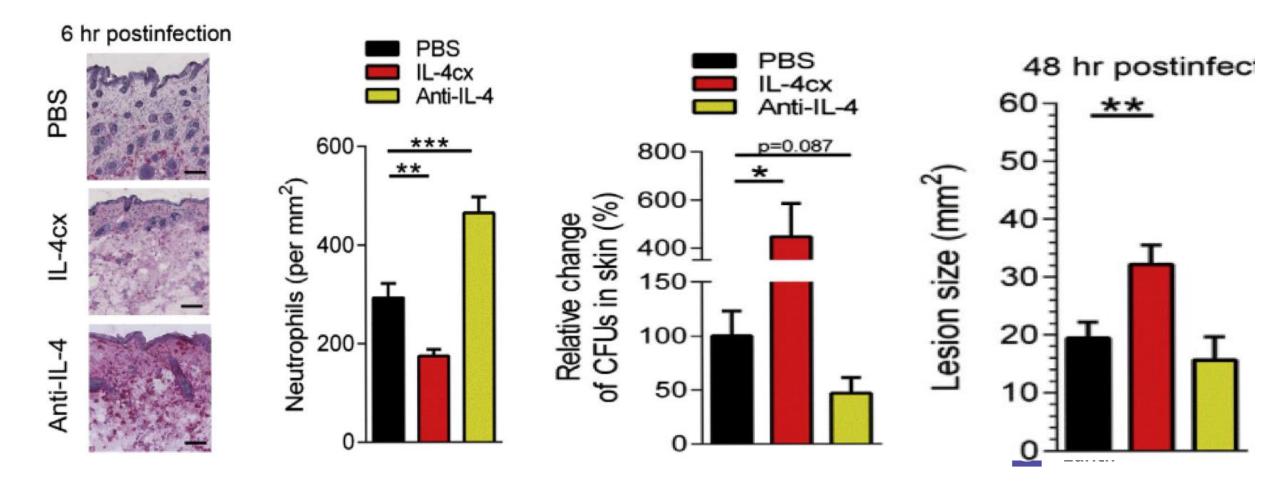
GAS, group A Streptococcus; OR, odds ratio; CI, confidence interval; CRP, C-reactive protein

International Journal of Infectious Diseases 16 (2012) e735-e738

The association between vitamin D levels and recurrent group A streptococcal tonsillopharyngitis in adults

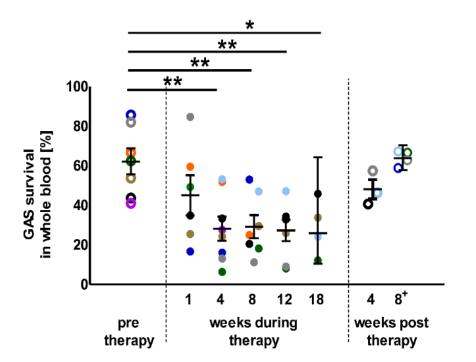
William Nseir ^{a,b,e,*}, Julnar Mograbi ^{a,b}, Zuhair Abu-Rahmeh ^c, Mahmud Mahamid ^a, Omar Abu-Elheja ^a, Adel Shalata ^d

Atopic Dermatitis

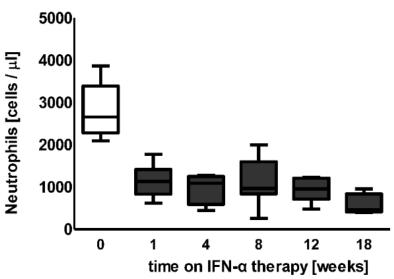

 Allergic 'type-2' inflammation (IL4)-> hampers neutrophil expansion and migration

Why are atopic individuals more prone to infections with Gram positive bacteria?

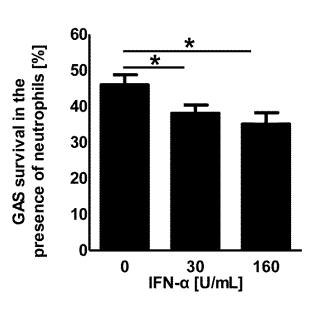
Atopic Dermatitis


IL4-complex = fewer neutrophils, anti-IL4 = more neutrophils

J. Woytschak et al., Immunity 2016

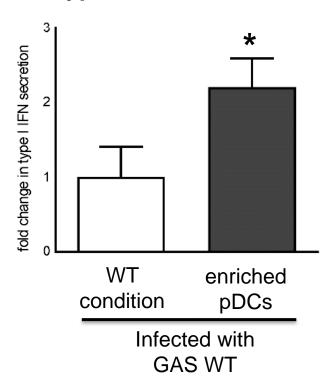


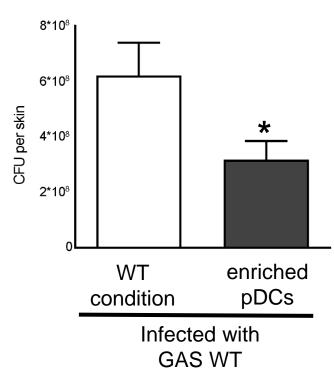
Exogenous IFN-α boots GAS killing



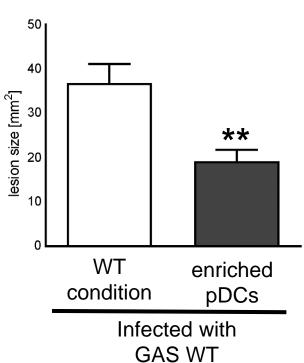
Neutrophil counts over time of therapy

GAS survival in IFN-α stimulated neutrophils



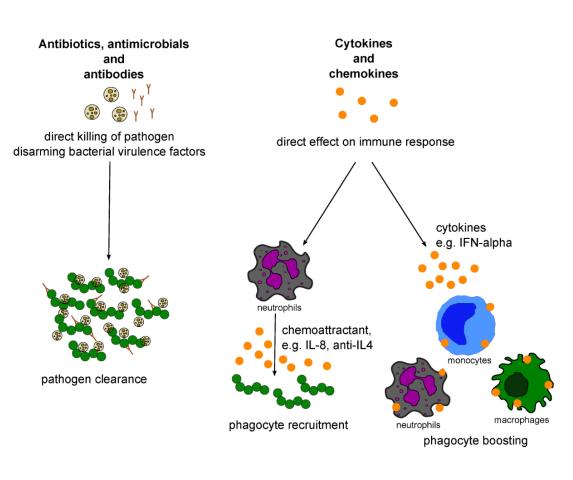


Endogenous IFN-α improves outcome


Type I interferon levels

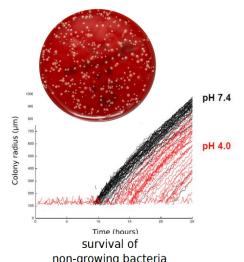
Bacterial load

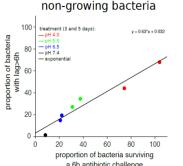
Lesion sizes



Antibiotics and beyond for treating invasive GAS infections

- Pathogen directed therapy
 - Killing
 - beta lactams, phages, endolysine
 - Anti- toxine strategies
 - Protein synthesis inhibitors
 - IVIG
 - Anti- biofilm strategies
- Host directed therapy
 - Vitamin D, HIF-1α inducers, IL-4,
 Interferon α


UniversitätsSpital


Pathogenesis of Gram positive Bacterial Infections

- **Commensals Misbehaving** Susceptible Staphylococci spp.
 - 1. 'Location': abscess, intracellular, biofilm
 - 2. 'Growth': stationary bacteria, persisters
 - -> Removal of infectious source crucial
 - -> Antibiotics: The proportion of bacteria in lag phase correlates with the proportion of bacteria survivng antibiotics
- Group A Streptococci: high inocculum, many virulence factors - combination therapy penicillin, clinda plus IVIG UniversitätsSpital

TEAMWORK

Many thanks

Klinik für Infektionskrankheiten & Spitalhygiene

Kardiologie und Herzchirurgie USZ

Eawag

Prof. M. Ackermann and C. Vulin, PhD

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO Swiss National Science Foundatio atoshi Uchiyama

Federica Andreoni **Andrea Tarnutzer Markus Huemner** Nicola Häffner Vanina Hauenreiter Dengler **Yvonne Achermann Mathilde Boumasmoud Srikanth MairpadyShambat** Alejandro Gomez Mejia **Tizian Schweizer**

Carmen Menzi

Dennis Wipfli

Kati Seidl

Nadia Keller

Sandra Götschi

Nadja Leimer

Carol Rachmühl

Miguel Palheiros Margues

Sandro Pereira

Milton Meerwein

Michèle Leemann

Claudia Zürcher Katrin Schilcher Rev Gaffner

UniversitätsSpital Zürich