

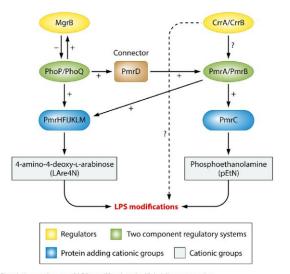
XIX. TÜRK KLİNİK MİKROBİYOLOJİ VE İNFEKSİYON HASTALIKLARI KONGRESİ

28 - 31 MART 2018 | GLORIA GOLF RESORT | BELEK / ANTALYA

Therapeutic Options in Colistin Resistant Carbapenem producing Klebsiella Infections

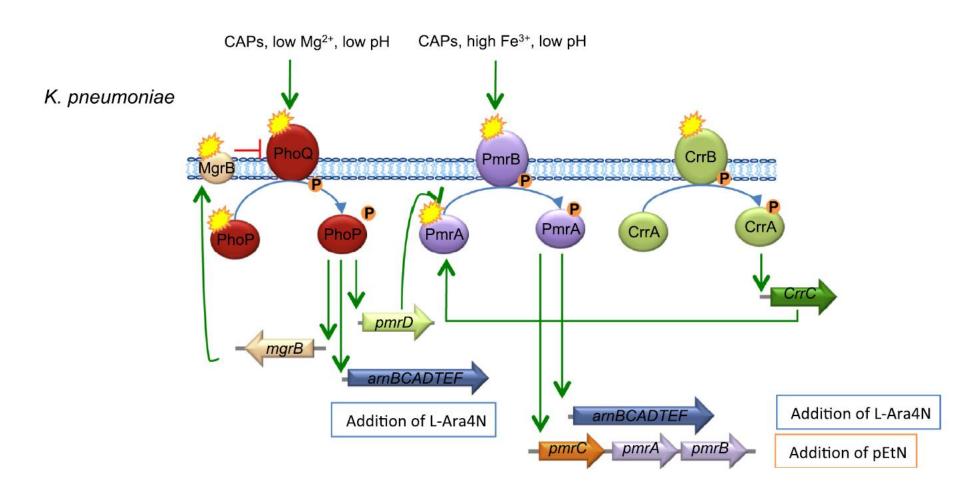
Kolistin Direnci: Tedavi

Seçenekleri


Nicola Petrosillo, MD, FESCMID

National Institute for Infectious Diseases "L. Spallanzani", Rome, Italy

Resistence to Colistin in Gram negatives


- Polymyxin resistance in Gram-negative bacteria is primarily due to post-translational modification of the lipopolysaccharide (LPS) molecules that form the outer layer of the outer membrane.
- In most resistant strains, substituents such as 4-amino-4deoxy-l-arabinose (l-Ara4N), phosphoethanolamine (pEtN) or galactosamine are enzymatically added to the lipid A or the LPS core; alternatively, the LPS part of the outer membrane may be completely lost in some other isolates.

 Colistin resistance is predominantly achieved through a reduction of the electrostatic attraction between colistin and the Gram-negative outer membrane

Trent MS. Biochem Cell Biol 2004;82:71–86.
Ernst RK et al. Microbes Infect 2001;3:1327–34.
Moskowitz SM et al. J Bacteriol 2004;186:575–9.
Pelletier MR et al. Antimicrob Agents Chemother 2013;57:4831–40.
Moffatt JH et al. Antimicrob Agents Chemother 2010;54:4971–7.

Schematic representation of regulation of genes involved in polymyxin resistance in clinical isolates of *Klebsiella pneumoniae*

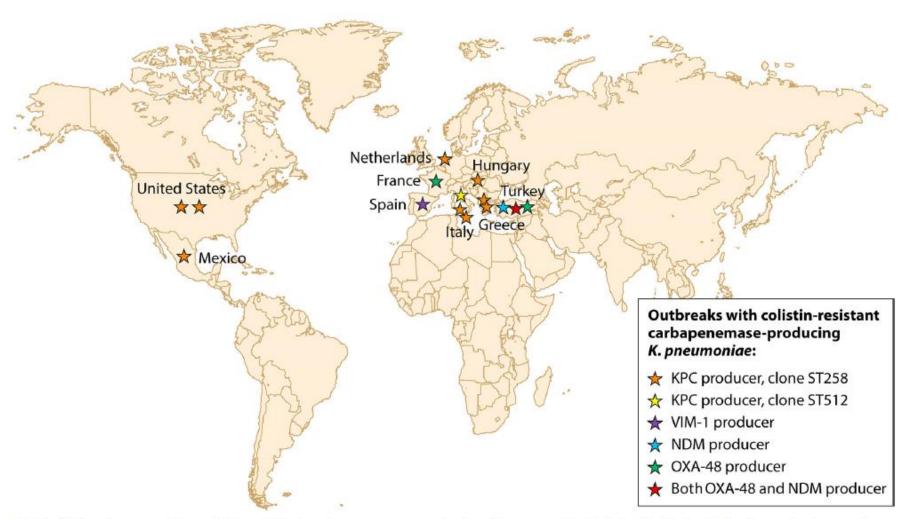


FIG 5 Outbreaks caused by colistin-resistant, carbapenemase-producing K. pneumoniae isolates. Each star indicates a single report.

TABLE 3 Chromosomal mutations and amino acid deletions responsible for acquired colistin resistance in *Klebsiella pneumoniae*, *Enterobacter aerogenes*, *Escherichia coli*, *Salmonella enterica*, *P. aeruginosa*, and *A. baumannii* isolates

Bacterial group and species	Protein (normal length [aa])	Domain involved (residues) ^{a,b}	Amino acid change ^d	Reference(s)
Enterobacteriaceae				
K. pneumoniae	PmrA (223)	REC (1-112)	S42N	120
•			G53C	105, 120
			G53S	105
		Trans_reg_C (145-216)		
	PmrB (365)	TM (13-35)	ΔR14	118
			L17Q	105
		HAMP (90-142)	L82R	116
			S85R	120
			T140P	120
		HisKA (143–203)	T157P	117–119
			S208N	118
			ΔY209	118
		HATPase_c (250–358)	R256G	117
	PhoP (223)	REC (1-112)	V3F	117
			L26Q	120
			S86L	117
		Trans_reg_C (145–220)		81
	PhoQ (488)	PhoQ sensor (10–189)	R16C	105
			L26P	117
			L96P	120
			D150G	117
			S174N	118
		HAMP (195–263) HisKA (267–330)	V258F	117
			L348Q	120
		HATPase_c (375–482)	G385S	120
	MgrB (47)		D434N	128
			K3*	105
			L9*	120
			l13*	120
			A14S	120
			W20R	105
			L24H	130
			V26*	120
			M27K	105
			C28F	120
			C28Y	117, 120, 128, 1
			C28*	105, 120
			Q30*	105, 120
			D31N	120
			Q33* F35I	105
			G37S	120
				130
			C39Y N42Y/K43I	105
			145T	105 105
			W47R	105
			W47K W47*	105
			*48Y	117
	CrrB (353)		Q10L	128, 137
	(333)	TM (12-34)	Y31H	137
		HAMP (81–135)	L94 M	128
		HisKA (136–200)	W140R	137
		1 113NA (130-200)	W140K N141I	137
			P151S	137
			S195N	137

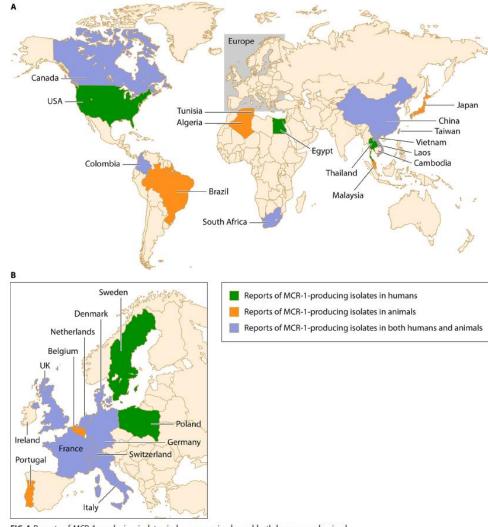


FIG 4 Reports of MCR-1-producing isolates in humans, animals, and both humans and animals.

Poirel L et al. Clin Microbiol Rev 2017; 30:557-596.

Hospital Outbreak of a Colistin-Resistant, NDM-1- and OXA-48-Producing *Klebsiella pneumoniae*: High Mortality from Pandrug Resistance

Table 2. Clinical Characteristics of the Patients Who Were Detected as Positive for Carbapenem-Resistant Klebsiella pneumoniae Throughout the Outbreak Period

		Comorbidity					PFGE		
Patient	Age/sex	•	ICU	Clinical sample	CR/COLr	Carbapenemase	type	Treatment	Outcome
A	74/M	Malignancy Colon resection Pneumonia	AR-ICU	Empyema	+/+	OXA-48 NDM-1	Ι	MEM/Col	Died
В	21/M	CNS Ca Pneumonia Sepsis	AR-ICU	Blood	+/+	OXA-48 NDM-1	I	MEM/Col	Died
C	0/M	CNS surgery Meningitides	NB-ICU	CSF	+/-	NDM-1	II	MEM/Col	Survived
D	30/M	Trauma Sepsis	AR-ICU	Blood	+/+	OXA-48 NDM-1	I	MEM/Col	Died
Е	28/M	Suicides Sepsis	AR-ICU	Blood	+/+	OXA-48 NDM-1	Ι	MEM/Col	Died
		Pneumonia		Tracheal aspirate	+/+	OXA-48 NDM-1	I		
F	84/M	COPD Pneumonia	AR-ICU			OXA-48 NDM-1	I	(-)	Died
G	0/F	Asphyxia Bacteremia	NB-ICU	Blood	+/-	(-)	III	FEP/Col	Died
Н	0/M	Congenital urinary anomalies	NB-ICU	Urine	+/+	OXA-48 NDM-1	I	_	Survive

Impact of the ST101 clone on fatality among patients with colistin-resistant *Klebsiella pneumoniae* infection

115 pts→ mortality 72%

Table 3. Predictors of 30 day mortality among patients infected with ColR-Kp

	Univariate analysis			Adjusted analysis ^a		
	OR	CI	Р	OR	CI	Р
Female	0.7	0.3-1.54	0.341	_	_	_
ICU stay	6.6	1.85-29.97	0.001	7.4	2.23-29.61	0.002
Bacteraemia	0.9	0.4-2.1	0.848	_	_	_
More than two comorbidities	0.5	0.22-1.29	0.145	_	_	_
VAP	2.3	0.99-5.33	0.038	1.6	0.71-3.86	0.249
Prior colistin use within the last 3 months	0.6	0.27-1.41	0.252	_	_	_
Carbapenem resistance	2.2	0.35-15.53	0.43	_	_	_
NDM-1	0.9	0.32-2.69	>0.999	_	_	_
OXA-48	1.4	0.48-3.9	0.628	_	_	_
ST101	3.2	1.36-7.52	0.004	3.4	1.46-8.15	0.005

Can F et al. J Antimicrob Chemother. 2018 Feb 3.

Colistin susceptible K. pneumoniae

B.A.L. per germi comuni

Numerose colonie di K. pneumoniae

Antibiogramma Criteri EUCAST

Materiale Broncolavaggio
Organismo Klebsiella pneumoniae
Carica batterica Sviluppo di numerose colonie

ANTIBIOTICI MIC - Sensibilità

Resistente Mic: >16 .Amikacina Amoxicillina/A.CLAV. Resistente Mic: >32/2 .Ampicillina Resistente Mic: >8 Cefepime Resistente Mic: >8 Cefotaxime Resistente Mic: >4 Ceftazidime Resistente Mic: >8 Cefuroxime Resistente Mic: >8 Ciprofloxacina Resistente Mic: >1

Colistina In corso

Ertapenem Resistente Mic: >1 Sensibile Mic: 32 Fosfomicina Gentamicina Intermedio Mic: 4 Resistente Mic: >8 Imipenem Levofloxacina Resistente Mic: >2 Meropenem Resistente Mic: >8 Piperacillina Resistente Mic: >16 Piperacillina/tazobactam Resistente Mic: >16/4

Tigeciclina In corso

Tobramicina Resistente Mic: >4
Trimetoprim/Sulfam. Resistente Mic: >4/76

Markers Beta-lattamasi a spettro esteso

Potenziale produttore di carbapenemasi

ANTIBIOTICI MIC - Sensibilità

Colistina 0,06 Sensibile (Microdiluizione in brodo)

Tigeciclina 1 Sensibile (E-Test)
Commento Ripetizioni del 13/03/18

Test fenotipico conferma CRE ceppo produttore di carbapenemasi

Disco diffusione con EDTA e PBA

di tipo KPC (serinobetalattamasi)

Colistin resistant K. pneumoniae

Antibiogramma

Criteri EUCAST

Materiale T. rettale

Organismo Klebsiella pneumoniae

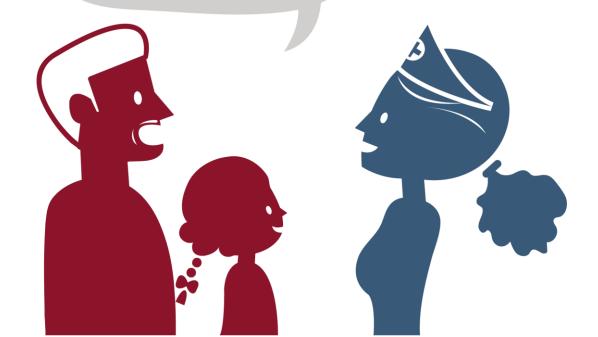
Carica batterica Sviluppo di numerose colonie

ANTIBIOTICI MIC - Sensibilità

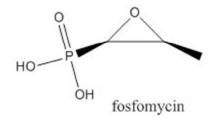
Amikacina Resistente Mic: >16
Amoxicillina/A.CLAV. Resistente Mic: >32/2
Ampicillina Resistente Mic: >8
Cefepime Resistente Mic: >8
Cefotaxime Resistente Mic: >4
Ceftazidime Resistente Mic: >8
Cefuroxime Resistente Mic: >8
Cefuroxime Resistente Mic: >8

Ciprofloxacina Resistente Mic: >1 Colistina Resistente Mic: >4 Ertapenem Resistente Mic: >1 Fosfomicina Sensibile Mic: 32 Gentamicina Intermedio Mic: 4 Imipenem Resistente Mic: >8 Levofloxacina Resistente Mic: >2 Meropenem Resistente Mic: >8 Piperacillina Resistente Mic: >16 Piperacillina/tazobactam Resistente Mic: >16/4 Tobramicina Resistente Mic: >4

Trimetoprim/Sulfam. Resistente Mic: >4/76


Markers Beta-lattamasi a spettro esteso

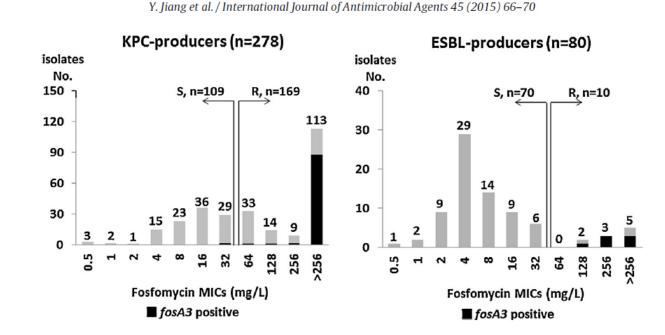
Potenziale produttore di carbapenemasi



Colistin-resistant *Klebsiella*pneumoniae. Which treatment?

We like treatment option number 1

Fosfomycin



- Cell wall active antibiotic, with a structural simplicity and low molecular weight
- Penetration into the cell wall achieved through transport systems
 utilized by alpha-glycerol-phospate and glucose-6-phosphate→
 block the formation of N-acetylmuramic acid→bactericidal (Gram+,
 Gram-)
- Urinary infections fosfomycin tromethamine (>50% bioavability after oral administration)
- Systemic infections → IV formulation (4 gm every 6 hours and more).
- Resistance is rare in E coli (chromosome encoding transport systems→GlpT and UhpT)

Fosfomycin resistance in Klebsiella and Enterobacter sp.

- In clinical isolates up to 20% (Akova M et al. Clin Microb Infect 2012; 18:439-48)
- Resistance is also mediated through plasmids that code for fosfomycininactivating enzymes (fosA).

Monotherapy with Fosfomycin may select resistance

Tigecycline

TABLE 1. Distribution of carbapenemase-producing Enterobacteriaceae isolates according to carbapenemase type and medical center location

Organism (no. of strains)	Carbapenemase		Medical center	Tigecycline MIC			
Organism (no. or strains)	Carbapenemase	No.	Location (no. of strains)	range (μg/ml)	Castanh	neira M et al.	
K. pneumoniae (53)	KPC-2/3 KPC-2 VIM-1	4 1 1	New York, NY (37) Mineola, NY (6) Athens, Greece (10)	0.25-4 1-2 0.12-1	Antimic	rob Agents	
K. oxytoca (7)	KPC-2 KPC-2/3 KPC-3	2 1 1	Little Rock, AK (3) New York, NY (3) Charlottesville, VA (1)	0.25-0.5 0.12-1 0.5	Chemot 52: 570-	her 2008; ว	
C. freundii (9)	KPC-2/3 KPC-2 KPC-3	2 1 1	New York, NY (7) Mineola, NY (1) Wilmington, DE (1)	0.25-2 1 0.12	32. 370-	3	
E. cloacae (22)	KPC-2/3 KPC-2 NMC-A IMP-1	2 1 1	New York, NY (3) Charlottesville, VA (3) New York, NY (1) Istanbul. Turkev (10)	0.12–0.5 0.5 0.12 0.25–0.5			
	VIM-1	1 1 1 1	Table 3. Area ratio ^a	under the concer	tration–time data a	nd penetration	
E. gergoviae (1)	KPC-3	1					
E. hormaechei (1)	KPC-2	1					
S. marcescens(7)	KPC-2/3 SME-1	2 1 1 1	Tissue or body fluid	Site AUC ₀₋₂₄ (mg·h/L or	Serum AUC ₀₋₂₄	AUC ₀₋₂₄ ratio	
E. coli (4)	KPC-2/3	2	group	mg⋅h/kg) ^b	(mg·h/L)	(site:serum)	
			Bile	2815/1787	5.24/4.86	537/368	
			Gall bladder	119.99/65.96	5.24/4.86	23/14	
			Colon	17.30/9.83	6.58/5.46	2.6/1.8	
			Lung	9.19/8.02	4.48/3.99	2.0/2.0	
Rodvold KA et al. J			Bone	2.05/1.26	4.95/4.49	0.41/0.28	
		=					
	icrob Chemo		Synovial fluid	1.68/1.58	5.35/4.86	0.31/0.32	
2006;	58: 1221–122	29	CSF	0.460/0.426	4.18/3.59	0.11/0.12	

Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant *Klebsiella pneumoniae*

Gonzalez-Padilla M et al. J Antimicrob Chemother 2015; 70: 905-913

retrospective cohort study on 50 patients with severe infection caused by carbapenem-resistant and colistin-resistant K. pneumoniae

Type of infection	
pneumonia	24 (48.0)
purulent tracheobronchitis	4 (8.0)
urinary tract infection	10 (20.0)
surgical wound infection	4 (8.0)
intra-abdominal infection	1 (2.0)
infection of skin and soft tissue	1 (2.0)
endocarditis	1 (2.0)
primary or catheter-related bacteraemia	4 (8.0)
infection of the CNS	1 (2.0)

Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant *Klebsiella pneumoniae*

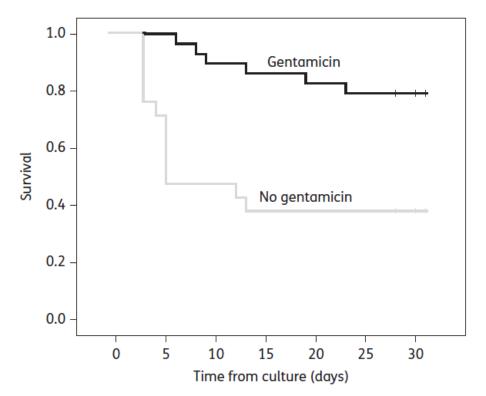
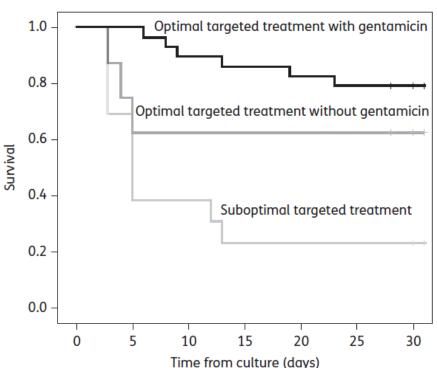

Gonzalez-Padilla M et al. J Antimicrob Chemother 2015; 70: 905-913

Table 2. Antibiotics used in 50 patients with severe infection caused by carbapenem-resistant and colistin-resistant K. pneumoniae


	Number (%) of patients						
	optimal	mortality	suboptimal	mortality	total	mortality	
Empirical treatment	6 (8.0)	2 (33.3)	44 (92.0)	17 (38.6)	50	19 (38.0)	
tigecycline	4 (66.6)	2 (50.0)	0	0	4 (8.0)	2 (50.0)	
tigecycline + gentamicin	2 (33.3)	0	0	0	2 (4.0)	0	
fosfomycin	0	0	1 (2.2)	0	1 (2.0)	0	
meropenem	0	0	18 (40.9)	8 (44.4)	18 (36.0)	8 (44.4)	
piperacillin/tazobactam	0	0	7 (15.9)	0	7 (14.0)	0	
amoxicillin/clavulanic acid	0	0	2 (4.5)	0	2 (4.0)	0	
others	0	0	16 (36.4)	9 (56.2)	16 (32.0)	9 (56.2)	
Targeted treatment	37 (74.0)	9 (24.3)	13 (26.0)	10 (76.9)	50	19 (38.0)	
monotherapy	16 (43.2)	4 (25.0)	6 (46.2)	5 (83.3)	22 (44.0)	9 (40.9)	
tigecycline	8 (21.6)	3 (37.5)	1 (7.7)	0	9 (18.0)	3 (33.0)	
high-dose tigecycline	3 (8.1)	0	0	0	3 (6.0)	0	
gentamicin	8 (21.6)	1 (12.5)	0	0	8 (16.0)	1 (12.5)	
meropenem	0	0	5 (38.5)	5 (100)	5 (10.0)	5 (100)	
combination therapy	21 (56.7)	5 (23.8)	7 (53.8)	5 (71.4)	28 (56.0)	10 (35.7)	
tigecycline + gentamicin	21 (56.7)	5 (23.8)	0	0	21 (42.0)	5 (23.8)	
high-dose tigecycline	7 (18.9)	1 (14.3)	0	0	7 (14.0)	1 (14.3)	
meropenem + fosfomycin	0	0	1 (7.7)	1 (100)	1 (2.0)	1 (100)	
tigecycline + colistin	0	0	1 (7.7)	1 (100)	1 (2.0)	1 (100)	
high-dose tigecycline	0	0	1 (7.7)	1 (100)	1 (2.0)	1 (100)	
$meropenem + colistin \pm fosfomycin$	0	0	5 (38.5)	3 (60.0)	5 (10.0)	3 (60.0)	

Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant *Klebsiella pneumoniae*

Gonzalez-Padilla M et al. J Antimicrob Chemother 2015; 70: 905-913

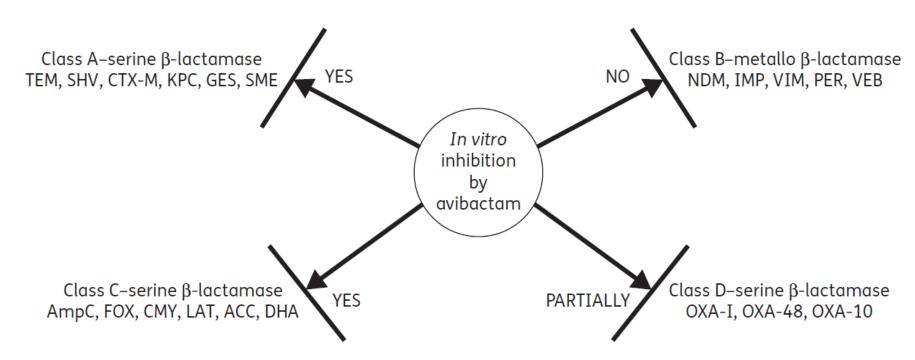
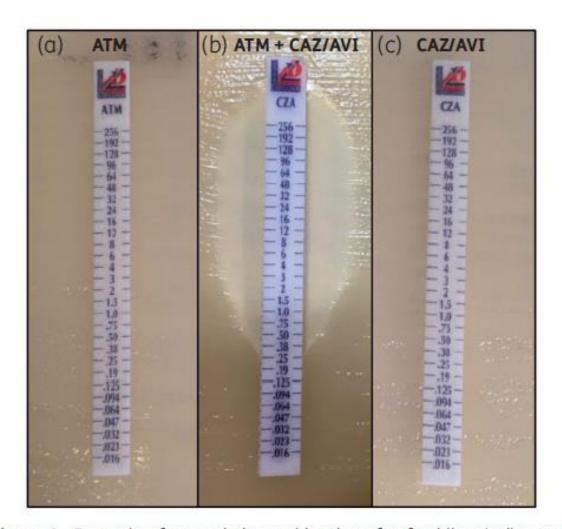


Figure 1. Kaplan–Meier curves showing the impact of targeted treatment with gentamicin on survival at 30 days in patients with severe infection caused by carbapenem-resistant and colistin-resistant K. pneumoniae (log-rank test 11.9, P=0.001).

Novel antimicrobial agents against CRE

- Avibactam is a non-β-lactam β-lactamase inhibitor that is active against known Ambler class A and C βlactamases with activity against some Ambler class D enzymes as well.
- In vitro, avibactam inhibits the activity of Ambler class A (including ESBL and KPC), class C (i.e. AmpC), and some class D (including OXA-48) enzymes.
- It is not active against MBLs (e.g. NDM, VIM, IMP) due to the absence of the active-site serine residue in these enzymes.



Activity of avibactam against different classes of β -lactamases.

Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae

Aurélie Jayol¹⁻⁴, Patrice Nordmann^{1-3,5}, Laurent Poirel¹⁻³* and Véronique Dubois^{4,6} J Antimicrob Chemother 2018; **73**: 542-544

- A collection of 63 K pneumoniae, all resistant to colistin (MICs of colistin ranging from 8 to>128 mg/L), recovered from clinical samples in France, Colombia and Turkey were tested.
- Aim: to determine the in vitro activity of ceftazidime/avibactam, alone (for A [KPC] and D [Oxa48 et der] carbapenemase producers) or in combination with aztreonam (for class B [MBL] carbapenemase producers) against Colistin-resistant and carbapenemase-producing K. pneumoniae

Figure 1. Example of synergistic combination of ceftazidime/avibactam (CAZ/AVI) and aztreonam (ATM) for an NDM + ESBL-producing *K. pneumoniae*. Susceptibility testing of ATM alone (a), combination of CAZ/AVI with ATM (b) and CAZ/AVI alone (c). This figure appears in colour in the online version of *JAC* and in black and white in the print version of *JAC*.

The synergy of the combination of ceftazidime/avibactam with aztreonam against NDM producers could be explained by the neutralization of the ESBL activity by avibactam allowing a restoration to aztreonam.

Plazomicin activity against polymyxin-resistant Enterobacteriaceae, including MCR-1-producing isolates

- Plazomicin (plazomicin sulphate, ACHN-490) is a novel semisynthetic aminoglycoside derived from sisomicin.
- Plazomicin is insensitive to classical aminoglycosidemodifying enzymes such as acetyl-, phosphoryl- and nucleotidyl-transferases.
- Plazomicin is active against clinical isolates possessing a broad range of resistance mechanisms, including ESBLs, carbapenemases and fluoroquinolone target site mutations.
- This novel antibiotic has the potential to address an unmet medical need for patients with serious MDR Enterobacteriaceae infections, including those caused by carbapenem- and colistin-resistant isolates.

Plazomicin activity against polymyxin-resistant Enterobacteriaceae, including MCR-1-producing isolates

- Susceptibility to plazomicin and comparators was tested by broth microdilution for a collection of 95 collection-resistant enterobacterial isolates collected from 29 hospitals in eight countries.
- Forty-two isolates (Klebsiella pneumoniae and Klebsiella oxytoca) possessed chromosomally encoded resistance mechanisms to colistin, 21 isolates (Escherichia coli and Salmonella enterica) expressed the mcr-1 gene, 8 isolates (Serratia, Proteus, Morganella and Hafnia) were intrinsically resistant to colistin and 24 isolates (K. pneumoniae, E. coli and Enterobacter spp.) had undefined, non-mcr-1 mechanisms.

Plazomicin activity against polymyxin-resistant Enterobacteriaceae, including MCR-1-producing isolates

- Plazomicin inhibited 89.5% and 93.7% of the colistinresistant enterobacterial isolates at 2 and 4mg/L, respectively.
- MICs of plazomicin were 2mg/L for all of the mcr-1 positive isolates and 4mg/L for all the intrinsic colistinresistant Enterobacteriaceae.
- Non-susceptibility to currently marketed aminoglycosides was common: amikacin, 16.8%; gentamicin, 47.4%; and tobramycin, 63.2%.

Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens

- Cefiderocol (CFDC) is a novel parenteral siderophore cephalosporin also known as S-649266.
- It possesses a unique mechanism for penetrating efficiently into Gram-negative pathogens.
- It uses a "Trojan horse" strategy by binding free iron and is then actively transported into bacterial cells across the outer membrane of Gram-negative bacteria by way of the iron-transport system

Dobias J et al. Eur J Clin Microbiol Infect Dis 2017; 36:2319–2327

Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens

Evaluation of the antimicrobial activity of cefiderocol against a panel of 753 multidrug-resistant bacterial isolates from human clinical sources with characterized antibiotic resistance mechanisms.

Table 1 Bacter	ial strains tested in	n this study
Genus (species)	Number of tested isolates	Characterized resistance
Klebsiella pneu	moniae (298)	
	101	KPC (-2/3/11)
	89	OXA (-48/162/163/181/204/232) ^a
	18	NDM ^b (-1/4)
	20	VIM (-1/4/19), IMP (-1/4/8)
	25	CTX-M (-3/15)
	45	Colistin R

Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens

- Colistin-resistant strains had high susceptibility to cefiderocol (≤0.5/≤2) and some activity for ceftolozane–tazobactam in the case of E. coli (0.25/>64), ceftazidime–avibactam (0.5/>64), amikacin (≤4/16), and tigecycline (≤1/≤1).
- Except for cefiderocol and tigecycline, the MIC90 values were close to or above the upper limit of the concentration range of the tested antibiotics for the Enterobacteriaceae being resistant to colistin.

Successful Ertapenem-Doripenem Combination Treatment of Bacteremic Ventilator-Associated Pneumonia Due to Colistin-Resistant KPC-Producing *Klebsiella pneumoniae*

TABLE 1 Antibiotic susceptibility comparison by Vitek 2, broth microdilution, and Etest methods against 4 K. pneumoniae isolates^a

Icolato no (day -f			MIC (mg/liter)b			
Isolate no. (day of hospitalization)	Specimen	Antibiotic	Vitek 2	Etest	BMD	
1 (48)	Endotracheal	IPM	≥16	>32	32	
	aspirate	MEM	≥16	>32	64	
		ERTA	≥8	>32	256	
		DOR	n.t	n.t	64	
		AK	≥64	48	32	
		COL	≥16	2	32	
		FOSFO	≥128	32	64	
		TGC	≥8	0.38	0.5	
2 (48)	Blood	IPM	≥16	>32	32	
		MEM	≥16	>32	64	
		ERTA	≥8	>32	512	
		DOR	n.t	n.t	32	
		AK	≥64	48	32	
		COL	≥16	4	16	
		FOSFO	≥128	64	128	
		TGC	≥8	1	0.5	
3 (53)	Blood	IPM	≥16	>32	32	
		MEM	≥16	>32	64	
		ERTA	≥8	>32	64	
		DOR	n.t	n.t	64	
		AK	≥64	48	32	
		COL	≥16	6	16	
		FOSFO	≥128	32	64	
		TGC	≥8	0.38	0.5	
4 (59)	Blood	IPM	≥16	>32	32	
		MEM	≥16	>32	64	
		ERTA	≥8	>32	512	
		DOR	n.t	n.t	64	
		AK	≥64	64	32	
		COL	≥16	4	16	
		FOSFO	≥128	32	64	
		TGC	≥8	0.75	0.5	

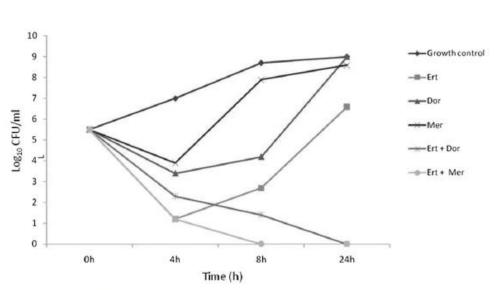


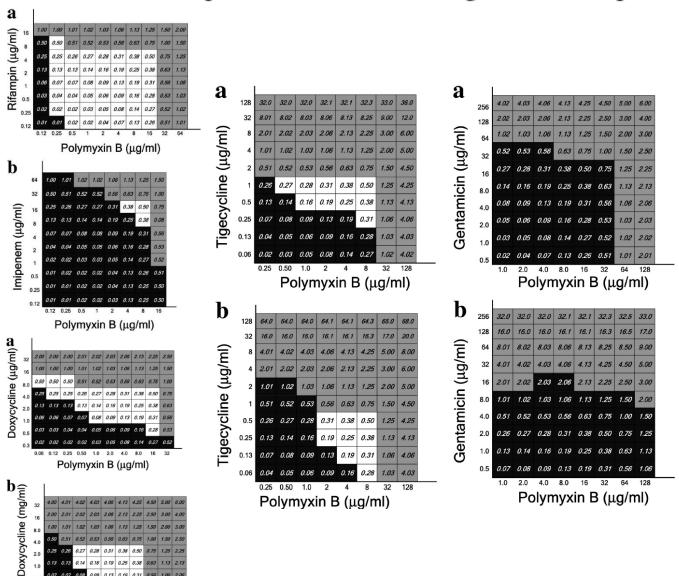
FIG 1 Time-kill curves for *K. pneumoniae* with ertapenem (Ert) at $1 \times \text{MIC}$ (512 mg/liter), doripenem (Dor) at $1 \times \text{MIC}$ (64 mg/liter), meropenem (Mer) at $1 \times \text{MIC}$ (64 mg/liter), and the combinations of ertapenem plus doripenem at $1 \times \text{MIC}$ and ertapenem plus meropenem at $1 \times \text{MIC}$.

Ceccarelli G et al. Antimicrob Agents Chemother 2013; 57: 2900-1

Should Collistin always be avoided for C-R K pneumoniae?

The Combination of Doripenem and Colistin Is Bactericidal and Synergistic against Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae

TABLE 4 AUCs for two-drug combinations after 24 h of incubation

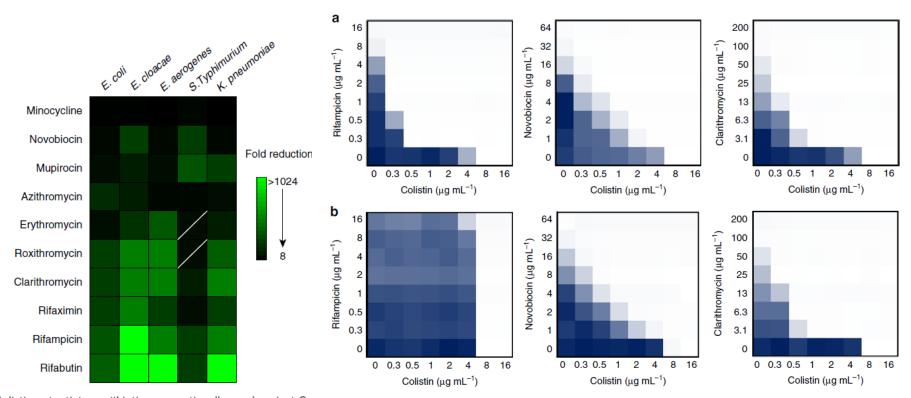

	AUC^a						
	Colistin			Doripenem			
Isolate	Plus doripenem	Plus gentamicin	Plus doxycycline	Plus gentamicin	Plus doxycycline	Gentamicin plus doxycycline	
1	62.34	88.02	NA	209.5	NA	106.6	
18	69.6	103.9	NA	81.7	NA	134.2	
82	74.8	57.4	141.0	62.8	150.6	52.9	
124	47.8	37.46	132.5	NA	128.2	NA	
133	87.9	110.2	NA	176.5	168.5	206.0	
136	84.8	121.4	138.5	202.9	213.6	143.4	
141	59.4	29.1	99.9	22.4	156.7	50.8	
145	81.5	139.0	157.4	NA	195.3	NA	
167	33.9	NA	51.0	207.6	207.4	220.1	
180	118.3	132.4	146.7	155.4	138.7	203.7	
182	112.3	137.0	135.5	183.8	164.8	168.2	
183	82.1	10.0	132.1	15.9	107.5	26.4	
Median (range)	78.2 (33.9–118.3)	103.9 (10.0–139.0)	135.5 (51.0–157.4)	165.9 (15.9–209.5)	160.8 (107.5–213.6)	138.8 (26.4-220.1)	

^a NA, not applicable; area under the curve was not calculated for antagonistic combinations.

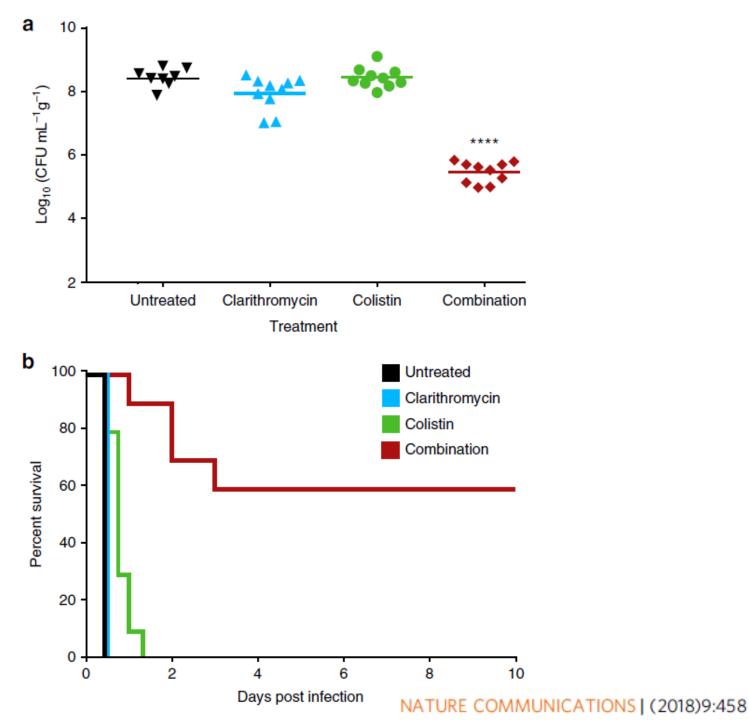
Doripenem plus colistin was synergistic against 60% (6/10) or 67% (4/6) of isolates that were resistant to colistin (MICs, 4 to 64 ug/ml) or resistant to all agents, respectively

Jernigan MG et al. Antimicrob Agents Chemother 2012;56:3395-8

In Vitro Evaluation of Antibiotic Synergy for Polymyxin B-Resistant Carbapenemase-Producing Klebsiella pneumoniae[∇]


Synergy when rifampin, doxycycline and tygecycline were added for polymixin B resistant CRE

Overcoming *mcr-1* mediated colistin resistance with colistin in combination with other antibiotics


Craig R. MacNair¹, Jonathan M. Stokes¹, Lindsey A. Carfrae¹, Aline A. Fiebig-Comyn¹, Brian K. Coombes¹, Michael R. Mulvey² & Eric D. Brown¹

NATURE COMMUNICATIONS | (2018)9:458

- mcr-1 confers resistance to colistin-induced lysis and bacterial cell death, but provides minimal protection from the ability of colistin to disrupt the Gram-negative outer membrane.
- For colistin-resistant strains of Enterobacteriaceae expressing plasmid-borne mcr-1, clinically relevant concentrations of colistin potentiate the action of antibiotics that, by themselves, are not active against Gram negative bacteria.
- Several antibiotics, in combination with collistin, display growth-inhibition at levels below their corresponding clinical breakpoints.

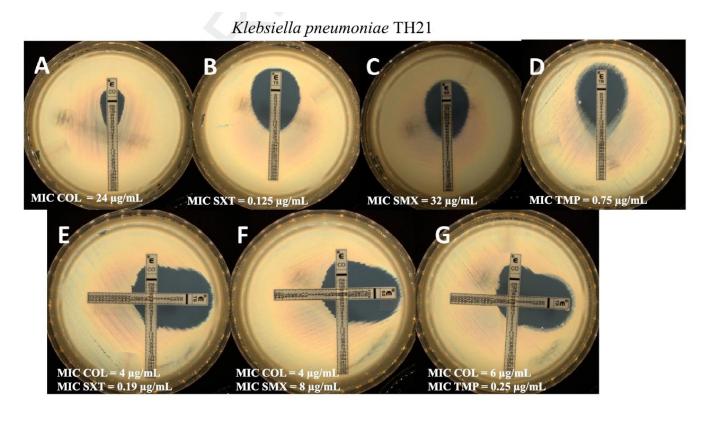


Fig. 1 Colistin potentiates antibiotics conventionally used against Grampositive bacteria in Enterobacteriaceae expressing *mcr-1*. Heat map showing the mean fold reduction of MIC in the presence of 2 μ g mL⁻¹ colistin for strains transformed with pGDP2:*mcr-1*. Antibiotics listed were potentiated \geq 8-fold across all lab generated Enterobacteriaceae strains. A lack of potentiation below clinical breakpoint is indicated by a diagonal white line. Data are representative of two biological replicates

New therapy from old drugs: Synergistic bactericidal activity of sulfadiazine with colistin against colistin-resistant bacteria, including plasmid mediated colistin-resistant *mcr-1* isolates

A collection of 55 COL-resistant and -susceptible bacteria from different origins (Laos, Thailand and France) were used

Fig. 1. Etest results for *Klebsiella pneumoniae* TH21 strain. (A–D) Minimum inhibitory concentration (MIC) results of COL (A), SXT (B), SMX (C) and TMP (D); and (E–G) Etest cross method for COL + SXT (E), COL + SMX (F) and COL + TMP (G), COL, colistin; SXT, trimethoprim/sulfamethoxazole; SMX, sulfamethoxazole; TMP, trimethoprim.

New therapy from old drugs: Synergistic bactericidal activity of sulfadiazine with colistin against colistin-resistant bacteria, including plasmid mediated colistin-resistant *mcr-1* isolates

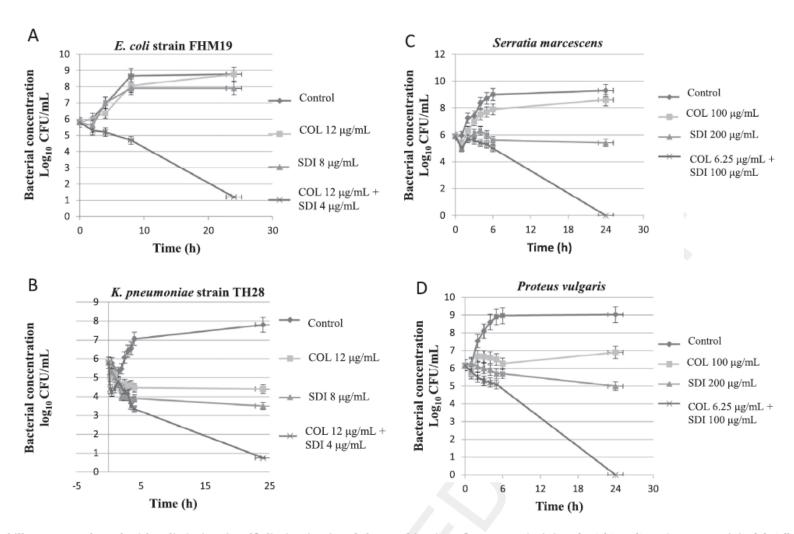


Fig. 4. Time-kill assays conducted with colistin (COL), sulfadiazine (SDI) and the combination of COL + SDI in (A) Escherichia coli strain FHM19, (B) Klebsiella pneumoniae strain TH28, (C) Serratia marcescens and (D) Proteus vulgaris.

Okdah L et al. Int J Antimicrob Agents. 2018 Feb 5

New therapy from old drugs: Synergistic bactericidal activity of sulfadiazine with colistin against colistin-resistant bacteria, including plasmid mediated colistin-resistant *mcr-1* isolates

Review of in vitro studies of colistin/sulfonamide combinations

Date	Combination	Strain	Origin	Colistin resistance	Method(s) used	Type of activity
1958	Polymyxin B + sulfonamide	Proteus sp.				
1963	Colistin(E) + sulfafurazole	Proteus sp.	Isolate	Resistant	Disk diffusion	Bactericidal action
					Nutrient broth	
1970	Polymyxin B + sulfadiazine	Serratia marcescens	Clinical isolates	Resistant	Agar pre-treated plate + disk	Lethal action
1070	6.11.	1010	ar i i i i	B	Broth culture	B
1970	Colistin sulphomethate	164 Gram-negative bacilli	Clinical isolates	-Proteus: resistant	Agar pre-treated plate + disc(2)	Bactericidal
	sodium(E) + sulfamethoxazole and trimethoprim			-143 excluding <i>Proteus</i> were colistin-resistant	Replica plate	
1973	Polymyxin + sulfadiazine	Proteus mirabilis	ATCC	-2 colistin-resistant	Culture on TSB	-Proteus: bactericidal
1575	1 ory my xm + bundanazme	Staphylococcus aureus	Clinical isolates	-L-form colistin-susceptible	Agar pre-treated	-S. aureus: bacteriostatic
		Staping to cooling automo		2 rem constitu susceptione	Plate + disk	
1974	Polymyxin	Gram-negative bacilli	Clinical isolates: Klebsiella	-28/52 colistin-resistant	Chequerboard	-Synergy
	B + sulfamethoxazole and		pneumoniae, Serratia,			-Proteus, Providencia:
	trimethoprim		Providencia, Proteus,			bactericidal
			Pseudomonas			_
1974	Colistin(E) + sulfamethoxazole	Pseudomonas maltophilia,	Clinical isolates	Colistin resistant	Agar pre-treated plate	Synergy
1076	and trimethoprim	Pseudomonas cepacia S. marcescens	Clinical isolates	Calistia assistant	Charman	Bactericidal
1976	Polymyxin E + sulfamethoxazole and	S. marcescens	Clinical isolates	Colistin resistant	Chequerboard Time-kill curves	Bactericidal
	trimethoprim				IIIIe-kiii cuives	
1993	Ciprofloxacin, polymyxin E,	Pseudomonas aeruginosa	NCTC	6/12 colistin-resistant	Chequerboard	Killing
1000	sulfadiazine and	S. aureus		o _i 12 consem resistant	Time-kill curves	8
	p-aminobenzoic acid					
2002	Colistin(E), rifampicin,	Stenotrophomonas maltophilia	Clinical isolates		Time-kill curves	Killing re-growth
	trimethoprim					
	sulfamethoxazole					
2012	Colistin	Acinetobacter baumannii	Clinical isolates = 3 ATCC		Chequerboard	Bactericidal at 0.5 MIC
	sulfate(E) + sulfamethoxazole	P. aeruginosa	strains and their mutants		Time-kill curves	
	and trimethoprim, vancomycin	K. pneumoniae				

TSP, trypticase soy broth.

Take home messages

- Colistin-resistant CR-Enterobacteraceae infections is challenging
- Treatment options are limited. They should take into account the medication itself, patophysiology, site of infection and PK/PD profile
- Scant data are available on mono vs combo therapy
- Combo therapy includes tige+aminoglicoside, fosfo+aminoglicoside+tige, etc..
- · New options: avibactam, plazomicin, siderophors
- For mcr1 strains colistin can be included in the combination therapy
- Old drugs should not be ruled out (sulfadiazine, macrolides)