Measuring antimicrobial consumption

Guillaume Béraud

Université Laval, Canada

October 5th, 2017

- Why
- What
- 3 How

Protecting antimicrobial

- Antimicrobial are mandatory tools for modern medicine (try to perform a transplantation without antibiotics . . .)
- Antimicrobials are excessively prescribed, which results in a rise of antimicrobial resistance, and less effective antimicrobials.
- Excessive prescription and antimicrobial resistance are not fatality, and can be tackled

According to WHO (Fact sheets, Sept. 2016)

- Antimicrobial resistance (AMR) threatens the effective prevention and treatment of an ever-increasing range of infections caused by bacteria, parasites, viruses and fungi.
- AMR is an increasingly serious threat to global public health that requires action across all government sectors and society.
- Without effective antibiotics, the success of major surgery and cancer chemotherapy would be compromised.

According to WHO (Fact sheets, Sept. 2016)

- The cost of health care for patients with resistant infections is higher than care for patients with non-resistant infections due to longer duration of illness, additional tests and use of more expensive drugs.
- Globally, 480 000 people develop multi-drug resistant TB each year, and drug resistance is starting to complicate the fight against HIV and malaria, as well.

Antimicrobial resistance results from antimicrobial consumption

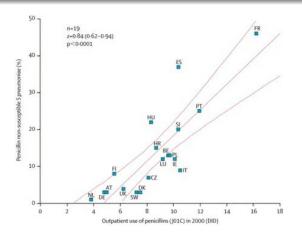


Figure – Goossens et al, Lancet 2005

And a decrease in antimicrobial consumption will result antimicrobial resistance

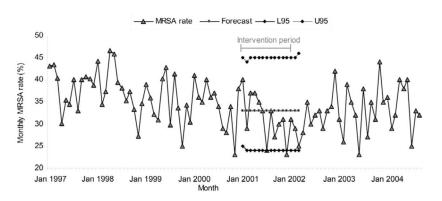


Figure - Charbonneau et al, CID 2006

To measure is to know

"If you cannot measure it, you cannot improve it"

--William Thomson

To model and to predict

Bruyndonckx et al linked resistance to penicillin in S. pneumoniae to consumption

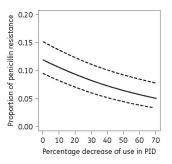


Figure - Bruyndonckx et al, JAC 2015.

What to measure

Antiinfectives

- Antibacterials
- Antifungals
- Antimycobacterials
- Antivirals

For

- Systemic use
- Local use

Figure – ATC stands for Anatomical Therapeutic Chemical

But a pharmacist classification ... not straightforward!

- J01C Beta-lactam antibacterials, penicillins
 - aminopenicillins
 - ureidopenicillins
- J01D Other Beta-lactams
 - cephalosporins
 - carbapenems

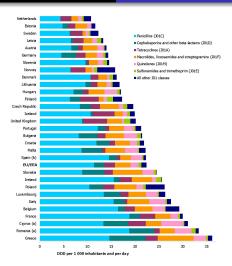


Figure – Consumption of antibiotics for systemic use in the community by antibiotic group, EU/EEA countries, 2015

How should we measure

Multiple methods

- Daily doses/1000 inhabitants/day (outpatient)
- Packages/1000 inhabitants/day (outpatient)
- Daily doses/100 hospital days (inpatients)
- Daily doses/100 cases (inpatients)

How should we measure

Multiple definitions and indicators

- DDD (Defined Daily Dose): Assumed average maintenance dose per day for a drug used for its main indication in adults. (www.whocc.no). Unrealistic (overestimation) but useful for international comparisons.
- PDD (Prescribed Daily dose) : Preferable!!!
- RDD (Recommended Daily Dose)
 (www.antiinfektiva-surveillance.de): The German touch: Realistic but very "local".

Table 1 Drugs most commonly used in the study hospital with differences in the definition of daily doses for antimicrobial agents as defined in the WHO/ATC index version 2007 and according to consensus practice guidelines of the university hospital of Freiburg.								
Drug class/group	Drug	DDD (g)	RDD (g)					
Narrow-spectrum	Penicillin G	3.6	12g					
betalactams	Ampicillin	2	15					
	Amoxicillin po	1	2.25					
	Flucloxacillin	2	8					
	Flucloxacillin po	2	3					
	Penicillin V po	2	1.88					
Intermediate-spectrum betalactams	Amoxicillin/clavulanic acid	3ª	6					
	Amoxicillin/clavulanic acid po	1 ⁸	1.75					
	Cefaclor po	1	1.5					
	Cefuroxim	3	4.5					
	Cefuroxim-Axetil po	0.5	1					
Broad-spectrum	Cefotaxim	4	6					
betalactams	Ceftazidim	4	6					
	Cefepim	2	6					
	Piperacillin	14	12					
	Piperacillin + tazobactam	14ª	12					
	Meropenem	2	3					
Fluoroquionolones	Ciprofloxacin	0.5	0.8					
	Ciprofloxacin po	1	1.5					
Macrolides/clindamycin	Clarithromycin po	0.5	1					
,	Clarithromycin iv	1	1					
	Clindamycin po	1.2	1.8					
	Clindamycin iv	1.8	1.8					
Aminoglycosides	Gentamicin	0.24	0.32					
	Netilmicin	0.35	0.45					
	Tobramycin	0.24	0.32					
	Amikacin	1	1.5					

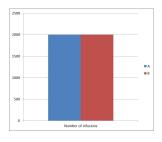
Figure – From de With et al JAC 2009

Formulas

$$DDD = \frac{\mathsf{Number\ of\ Units} \times \mathsf{Amount\ of\ drug\ per\ unit}}{DDD\ of\ the\ drug}$$

in general we express hospital consumption as a use density:

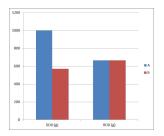
$$DDD/100 \text{ hospital-days} = \frac{\text{number of daily doses} \times 100}{\text{number of care days}}$$

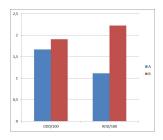

as only use density allows comparisons

Practical exercice

Let's compare 2 hospitals and their respective antibiotic consumption

- Hospital A: 2000 infusions of Cefotaxim (2 g per infusion), 60000 care days
- Hospital B: 2000 infusions of Piperacillin-Tazobactam (4 g per infusion), 30000 care days


Never compare infusions' number


	Cefotaxim IV	Pip-Taz IV
	(hosp. A)	(Hosp. B)
DDD	4g	14g
RDD	6g	12g
number of DDD		
number of RDD		
DDD/100		
RDD/100		

Let's do some math

$$DDD$$
 for Cefotaxime $= \frac{2000 \text{ infusions} \times 2g}{4g \text{ DDD of the drug}}$ RDD for Cefotaxime $= \frac{2000 \text{ infusions} \times 2g}{6g \text{ RDD of the drug}}$

	Cefotaxim IV	Pip-Taz IV
	(hosp. A)	(Hosp. B)
DDD	4g	14g
RDD	6g	12g
number of DDD	1000	571
number of RDD	667	667
DDD/100		
RDD/100		

	Cefotaxim IV	Pip-Taz IV
	(hosp. A)	(Hosp. B)
DDD	4g	14g
RDD	6g	12g
number of DDD	1000	571
number of RDD	667	667
DDD/100	1.7	1.9
RDD/100	1.1	2.2

- Antibiotic consumption 2006→2011 ¹
- 22 Norwegian hospitals
- DDD vs. hospital adjusted DDD (⇔RDD)

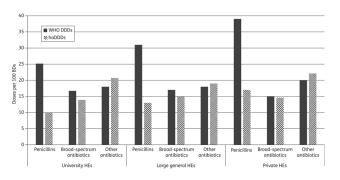


Figure – WHO defined daily doses versus hospital-adjusted defined daily doses : impact on results of antibiotic use surveillance

^{1.} Haug et al JAC 2013

Table 3. Ranking^a of the utilization of 24 antibiotics^b in 22 Norwegian HEs; rankings based on both WHO DDDs and haDDDs

		Ranking order																
Antibiotics		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Benzylpenicillin/phenoxymethylpenicillin										_	_	_	_	_	_	_	_	_
Metronidazole	WHO DDDs haDDDs		9					5				1	_	_		_	_	_

Figure – Ranking of the utilization of 24 antibiotics in 22 Norwegian hospitals; rankings based on both WHO DDDs and haDDDs

DDD vs. RDD

RDD provide

- a more realistic image of antimicrobial consumption.
- a less distorted inter-hospital comparison
- BUT, require similar recommendations
- Provide both!

PDD: Truly prescribed daily dose

- Point prevalence survey in a large German university hospital : PDD vs. DDD²
- Of the 1,754 PDDs, 625 were matching DDD dose definitions (36%), and 1,024 (58%) were matching RDD dose definitions (p < 0.01)
- Compared with PDDs, the use of DDDs as the measurement of hospital antibiotic use overestimated antibiotic use volumes by 32%, while the use of RDD led to a slight underestimation (-9%)

PID >> DID

Package per inhabitants were a better predictor of antimicrobial resistance than DDD per inhabitant.

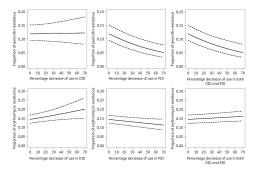


Figure – Average predicted proportion of non-susceptible S. pneumoniae isolates if outpatient antibiotic use had been lower than reported in 2007 (for b-lactam; top) or 2008 (for TMLS; bottom) due to a decrease in use in DID (left), PID (middle) or both (right). Bruyndonckx et al, JA€ 2015.

Where & when

- Hospital vs. hospital
- Similar or dissimilar wards: ICU, hematology . . .
- At different pace: Yearly, quarterly, monthly: Depending on the amount of data, it is always better to go for the less aggregated data

But if no reliable data to analyze?

- Typical problem in low income countries
- No reliable data
- Non-prescribed antibiotics
- •
- $\bullet \Rightarrow$ need for alternative methods ³

- Go and review pharmacy or hospital records or prescription documents⁴
 - Relatively easy to do
 - ullet Choice of pharmacies or health centre is not random o bias
 - No evaluation of the community level consumption
 - No information on non-prescribed antibiotic sold outside or inside antibiotics
 - No information on patients

- The simulated client⁵
 - An actor presents symptoms and asks for antibiotics
 - Gives proportion of pharmacies providing antibiotics without prescription
 - Focus on the provider, not on the patient
 - No information on antimicrobial consumption at the population level
 - Not adapted for surveillance

- Observed prescribing encounters, patient exit interviews⁶
 - Can provide DDDs per pharmacy-patients with or without prescription
 - Many variables can be gathered
 - Allows surveillance
 - ullet But selection of pharmacies are not at random o bias
 - No information on total consumption
 - Influence on the provider behaviour, participation fatigue

- Community surveys⁷
 - Houses are selected randomly and visited by field workers who ask resident about their antibiotic use
 - Allows calculation of unbiased population estimates
 - Accounts for all antibiotic sources, including non-prescribed sources
 - Time consuming and expensive
 - Poorly adapted for surveillance

^{7.} Awad A et al, J Pharm Pharm Sci 2005, Saradamma RD et al, Soc Sci Med 2000

Ability of four study types in responding to antibiotic (ATB) consumption investigation needs in low-income countries (LICs),^a

	Pharmacy/Hospital document review ^b	Simulated client method	Observed prescribing encounters/ Patient exit interview ^b	Community survey
Antibiotic investigation data				
Type and proportion of ATB use	+++	_	+++	++
DDDs per patient	+++	+	+++	+
ATB consumption for defined population and time period	+	+	+	+++
ATB source including all non-prescription sources	-	_	_	+++
Why ATB given	+++¢	++	+++	++
Factors associated with ATB use	-	+	++	+++
Non-prescription proportion		-	++	+++
Provider knowledge, attitudes and beliefs	-	+++	_	-
Patient knowledge, attitudes and beliefs	=	-	++	+++
Study characteristics				
Adapted to monitoring time trends	***	+	++	+

DDD, defined daily dose.

- a +, poor; ++, moderate; +++, good; -, not applicable.
- b Using non-exhaustive sample of centres/pharmacies.
- c If including patient records,

Take home message

- Use density (Daily dose per 100 patient-days)
- PDD if possible rather than DDD, or PID
- Start hospital wide, then go for high consumer wards (ICU, hematology etc)

Thank you for your attention

Questions?

