### Informatics as a tool for antimicrobial stewardship

### Guillaume Béraud

Université Laval, Canada

October 5th, 2017



- 2 Computerized decision support system
- 3 A source for Big Data

# The problem : When to start / When to stop

- Diagnosis are difficult & Mistakes are costly !
- Fever : Bacterial vs. viral? Cancer? Embolism? ...
- The cure of an infection is very difficult to assess :
  - A patient may be cure if no relapse occurs in absence of antibiotics after a certain duration (may be years for bone infections!)
- In other words, we don't know much ...
- ullet  $\Rightarrow$  Need of surrogates for diagnosis of infection and cure :
  - Computerized decision support system are potentially helpful surrogates

# What is it

• A program that generates diagnostic and therapeutic recommendations from patient specific information that was input about the suspected diagnosis, such as the presence or absence of specific signs and symptoms

What

- "Medical artificial intelligence"
- A system that links all the information available in various databases (clinical files, laboratory results, pharmacist...)

# Problem

- Many different systems operating in parallel in hospital
- Not standardized
- Not communicating



What How Why

Toward a common language for interoperability : HL7





Guillaume Béraud Informatics & AMS

## Not that recent

- Electronically identified interventions<sup>1</sup>
- LDS Hospital in Salt Lake City, Utah
- 545 patients in a 12-beds ICU over 1 year
- Outcomes compared to 2 previous years
- $\searrow$  in inappropriate ATB doses, ATB related drug events and total cost of care . . .

How

What How Why

# Effective even if basic

| IHC ANTIBIOTIC ASSISTANT & ORDER PROGRAM                                                                           |                  |                 |                |                       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------|-----------------------|--|--|--|--|
| 00000000 Doe, John O. E                                                                                            | 615 77vr M       | Dx:PANCR        | EATITIS        |                       |  |  |  |  |
| Max 24hr WBC = $26.3 \pm (21.1)$ Admit: $\frac{106}{21}$ Admit: $\frac{106}{21}$ Max 24hr Temp = $38.3 \pm (37.8)$ |                  |                 |                |                       |  |  |  |  |
| RENAL FUNCTION: Impaired, $CrCl= 28$ , Max 24hr $Cr=2.0 \downarrow$ (2.2) IBW: 77kg                                |                  |                 |                |                       |  |  |  |  |
| Patient's Diff shows a left shift, Max 24hr Bands = 20 1 (8)                                                       |                  |                 |                |                       |  |  |  |  |
| ANTIBIOTIC ALLERGIE                                                                                                | S: Ofloxacin     |                 |                |                       |  |  |  |  |
| CURRENT ANTIBIOTICS                                                                                                | :                |                 |                |                       |  |  |  |  |
| 1. 07/14/96.17:23 AMPHOTERICIN B, VIAL 45 Q 24hrs                                                                  |                  |                 |                |                       |  |  |  |  |
| 2. 07/18/96.12:19 VANCO                                                                                            | MYCIN (VAN       | COCIN), VIAI    | 1000           | Q 72hrs               |  |  |  |  |
| Total amphotericin given =                                                                                         | 181mg            |                 |                |                       |  |  |  |  |
| <b>IDENTIFIED PATHOGEN</b>                                                                                         | S                | SITE            | COI            | LECTED                |  |  |  |  |
| Enterococcus T-                                                                                                    |                  | T-Tube          | 07/1           | 7/96.10:57            |  |  |  |  |
| Staphylococcus aureus                                                                                              |                  | Blood           | 07/1           | 7/96.10:28            |  |  |  |  |
| Candida albicans                                                                                                   |                  | Abdomen         | 07/14/96.06:23 |                       |  |  |  |  |
| ABX SUGGESTION                                                                                                     | DOSAGE           | ROUTE           | INTERVA        | INTERVAL              |  |  |  |  |
| Vancomycin                                                                                                         | *1000mg          | IV              | *q72h          | (infuse over 1hr)     |  |  |  |  |
| Amphotericin B                                                                                                     | 45mg             | IV              | q24h           | (infuse over 2-4hr)   |  |  |  |  |
| Suggested Antibiotic Duration: 28 days                                                                             |                  |                 |                |                       |  |  |  |  |
| * Adjusted based on patier                                                                                         | nt's renal funct | ion             |                |                       |  |  |  |  |
| <1>Micro, <2>Organisa                                                                                              | mSuscept, <3>    | > Drug Info, <- | 4 > Explain    | Logic, <5>Empiric Abx |  |  |  |  |
| <6>Abx Hx, <7>ID Rnds, <8>Lab/Abx Levels, <9>Xray, <+ or F12>Change Patient                                        |                  |                 |                |                       |  |  |  |  |
| <esc>EXIT, <f1>Help, &lt;0&gt;User Input, &lt;.&gt;OutpatientModels</f1></esc>                                     |                  |                 |                |                       |  |  |  |  |
| ORDERS: <*> Suggested Abx, <enter> Abx List,  D/C Abx, &lt;-&gt; Modify Abx</enter>                                |                  |                 |                |                       |  |  |  |  |

注▶ 注

- What How Why
- 14 minutes vs. 3.5 seconds<sup>2</sup>
- Decreased cost <sup>3</sup>
- Appropriate antibiotic choice <sup>4</sup>
- Fewer antibiotic doses <sup>5</sup>
- Shorter LOS<sup>6</sup>
- Decreased adverse events<sup>7</sup>
- Decreased mortality<sup>8</sup>
- 2. Evans RS. NEJM 1998

3. Evans RS. *NEJM* 1998, Barenfanger J *J Clin Microbiol* 2001, Jozefiak ET *Am J Health Syst Pharm* 1995, McGregor JC *J Am Med Inform Assoc* 2006, Paul M *JAC* 2006, Pestotnik SL *Ann Intern Med* 1996, Schentag JJ *Diagn Microbiol Infec Dis* 1993

4. Paul M JAC 2006, Samore MH JAMA 2005, Thursky KA Int J Qual Health care 2006

- 5. Evans RS. NEJM 1998, Pestotnik SL Ann Intern Med 1996
- 6. Evans RS. NEJM 1998, Paul M JAC 2006
- 7. Evans RS. NEJM 1998, Pestotnik SL Ann Intern Med 1996
- 8. Pestotnik SL Ann Intern Med 1996

What How Why

### Classical commercial systems with AMS options

| Product Name             | Company<br>(also known as)                 | City, State        | Infection Prevention<br>Capabilities |  |
|--------------------------|--------------------------------------------|--------------------|--------------------------------------|--|
| 360 Care Insights        | Truven                                     | Ann Arbor, MI      | Yes                                  |  |
| ABX Alert                | ICNet                                      | Warrensville, IN   | Yes                                  |  |
| Antibiotic Assistant     | Hospira (Theradoc)                         | Salt Lake City, UT | Yes                                  |  |
| Dynamic Monitoring Suite | Vigilanz                                   | Minneapolis, MN    | Yes                                  |  |
| Epiquest Live            | Epiquest Live                              | Boca Raton,FL      | Yes                                  |  |
| Medici                   | Asolva Inc                                 | Pasadena, CA       | Yes                                  |  |
| Patient Event Advisor    | Care Fusion<br>(Medmined)                  | Birmingham, AL     | Yes                                  |  |
| QC Pathfinder            | Vecna                                      | Cambridge, MA      | Yes                                  |  |
| Safety Advisor           | Premier                                    | Charlotte, NC      | Yes                                  |  |
| Sentri 7                 | Wolters Kluwer<br>(Pharmacy One<br>Source) | Bellevue, WA       | Yes                                  |  |

< 一型

What How Why

# And very sophisticated ones



イロト イポト イヨト イヨト

Guillaume Béraud Informatics & AMS

## Common alerts for infectious diseases

- Bug-Drug mismatch
- Positive culture but no antibiotic
- Antibiotic but no positive culture
- IV to PO
- Duration of therapy alerts
- Duplicate antibiotic therapy
- Dose adjustments to renal/liver function
- Target specific antibiotics (carbapenem, costly ATB ...)

What

Why

• Target organism (MDRO)

# Practical examples

- Patients under Vancomycin >72h without positive culture
- Patients receiving Piperacillin/Tazobactam and Metronidazole

What

Why

- Patients eligible for conversion from IV to PO linezolid
- Levofloxacin at full dose with renal insufficiency
- Positive blood culture for C. albicans and no antifungal treatment

But it is also beneficial for non ID-related problems (anticoagulation...)

## Outpatient example

- Three arm cluster randomized trial <sup>9</sup>
- 33 primary care practices in Pennsylvania, USA
- Acute uncomplicated bronchitis
- Control vs. Print Based vs. Decision support

Guillaume Béraud

What How Why



Guillaume Béraud Informatics & AMS

э

What How Why

#### EVIDENCE-BASED MANAGEMENT OF ACUTE RESPIRATORY TRACT INFECTIONS



Guillaume Béraud Informatics & AMS

Wha How Why

## Results on antibiotic prescribing

- Control arm :  $\nearrow$  (72.5% $\rightarrow$ 74.3%)
- Print-based arm :  $\searrow$  (80% $\rightarrow$ 68.3%)
- Computerized decision support arm :  $\searrow \searrow$  (74.0% $\rightarrow$ 60.7%)



• • • • • • • • •

э

æ

What How Why

# Additional benefits with CDSS

CDSS similarly efficient to printed-based support, but

- Reports can be edited easily
- A general tool that can be easily adapted for many situation, according to new guidelines, new intervention ...
- Adherence can be measured (useful to justify your AMS Team)

What How Why

# Collaboration through CDSS

- Multisite ASP implementation supported by central CDSS
- Five Australian hospitals, 2010-2014
- Bond S. et al, JAC 2017

|                                               |                        | ntroduc             | tion of a m<br>ASP across                | ultisite CD<br>12 hospital | 5S-supported<br>sites      |                                                            |               |
|-----------------------------------------------|------------------------|---------------------|------------------------------------------|----------------------------|----------------------------|------------------------------------------------------------|---------------|
| Included                                      | in study evaluation    |                     |                                          |                            | Excluded                   | from stu                                                   | dy evaluation |
| Hospital                                      | Beds/ type             | CDSS implementation |                                          |                            | Ward roun                  | ds                                                         |               |
|                                               |                        | E                   | ducation                                 | Go-lin                     | 2                          |                                                            |               |
| St George†                                    | 650/ metro tertiary    | Oct 11-Apr 12       |                                          | May 2012                   | Daily Mon-F                | ri                                                         |               |
| Wollongong                                    | 550/ regional tertiary | Oct                 | 11-May 12                                | May 2012                   | Daily Mon-F                | ri                                                         |               |
| Shellharbour                                  | 100/ regional general  | Oct                 | 11-May 12                                | May 2012                   | Twice week                 | v                                                          |               |
| Shoalhaven                                    | 150/ regional referral | Oct                 | Oct 11-May 12 Ma                         |                            | Twice week                 | v                                                          |               |
| Prince of Wales                               | 550/ metro tertiary    | Oct                 | 11-Jul 12                                | Jul 2012                   | Daily Mon-F                | ri                                                         |               |
|                                               |                        |                     | Hose                                     | oitel                      | Beds/ type                 |                                                            | Exclusion*    |
|                                               |                        |                     | Sydney/Sydney Eve                        |                            | 80/metro specialist        |                                                            | Dalayad       |
| Common interventions<br>across included sites |                        |                     | Sutherland 400<br>Sydney Children's 154  |                            | 400/ metro referra         | )/ metro referral                                          |               |
|                                               |                        |                     |                                          |                            | 150/ specialist paediatric |                                                            | Data not      |
|                                               |                        |                     | Royal Women's                            |                            | 150/ metro specialist      |                                                            | comparable    |
|                                               |                        |                     | Bulli<br>Port Kembla<br>Milton-Ulladulla |                            | 50/ regional subac         | /regional subacute<br>/regional subacute<br>/rural general |               |
|                                               |                        |                     |                                          |                            | 70/ regional subac         |                                                            |               |
|                                               |                        |                     |                                          |                            | 30/ rural general          |                                                            |               |

- Consensus antimicrobial guideline development with traffic light system: green unrestricted; yellow –
  restricted with approval required through CDSS 24/7; red ID/microbiologist pre-authorisation approval only
- Development of CDSS clinical content to support consensus guidelines, agreed at monthly teleconferences
- Removal of restricted antimicrobials from ward stock (general wards)
- Resource development: lanyard card empiric antimicrobial guidelines; A4 posters (eg. surgical prophylaxis, community-acquired pneumonia); hospital intranet website (eg. aminoglycoside and vancomycin dosing guides; antifungal guidelines, CDSS process and contacts; FAQ)
- CDSS on-site training for all medical officers and pharmacists, annually and as required
- Promotion, educational material, hospital grand round and departmental presentations
- Ward rounds (ID doctor and pharmacist) 2-5 days per week with post-prescription review and feedback
- Bimonthly antimicrobial usage audit and national benchmarking with National Antimicrobial Utilization Surveillance Program (NAUSP) reported to each facility Antimicrobial Stewardship Committee for review Monitoring of Clostridum difficie cases

What How Why

### Interrupted Time Series

- Antibiotics targeted to decrease (+32%, p<0.01)
   </li>
- Antibiotics targeted to increase (-23%, p<0.01)
   </li>
- No increase in length of stay or mortality
- But influence decreased over time
- $oldsymbol{0} \Rightarrow \mathsf{An}$  efficient tool
- Ø But just a tool
- which won't replace the AMS team



# A source for Big Data

- Data mining on the gathered information
- New patterns to be discovered
- Which will results in new algorithms to feed the AI



# If you want to implement a CDSS

### Oetermine your objectives (and take your time)

- information needs
- gap within your current digital tools
- workflow interruptions requiring manual intervention
- . . .
- Choose a modular system (the tool should be adapted to your needs, you shouldn't need to adapt)
- Implement a system with option for Big Data tools (e.g. CARD)

# **Bioinformatics for AMS**

- Comprehensive Antibiotic Resistance Database (CARD; arpcard.mcmaster.ca)
- $\bullet\,$  From phenotype of resistance to genotype ightarrow data collection
- $\bullet\,$  From genotype to prediicting phenotype  $\to$  an AMS tool



### Tools



< □ > <

Thank you for your attention



### Whatever you do, your kids will be geek

