Diabetic Foot Osteomyelitis: What is New in Diagnosis & Treatment

Benjamin A. Lipsky, MD

FACP, FIDSA, FRCP (London), FFPM RCPS (Glasg)

Emeritus Professor Medicine, University of Washington Visiting Professor (Infectious Diseases), Associate Fellow, Green Templeton College, University of Oxford

Lipsky BA, "Bone of Contention: Diagnosing DFO". Clin Infect Dis 2008;47:528

Overview of Diabetic Foot Osteomyelitis

- Epidemiology: common problem with high morbidity
- Pathophysiology: spread from soft tissue infection
- Microbiology: mostly S. aureus; often polymicrobial
- Diagnosis: tests insensitive early; non-specific late
 - -Clinical (especially probe-to-bone); biomarkers
 - -Imaging: X-ray; MRI; SPECT/CT; PET/CT
 - Bone culture/histopathology
- Treatment: clinician/center dependent
 - Surgical: standard; combined with antibiotics
 - –Antibiotic: can be used alone; long duration
- Follow-up: difficult; at least 1 year

DIABETES/METABOLISM RESEARCH AND REVIEWS

Diabetes Metab Res Rev 2008; 24(Suppl 1): S145-S161.

Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/dmrr.836

Diabetic foot osteomyelitis: a progress report on diagnosis and a systematic review of treatment[†]

A. R. Berendt¹*, E. J. G. Peters², K. Bakker³, J. M. Embil⁴, M. Eneroth⁵, R. J. Hinchliffe⁶, W. J. Jeffcoate⁷, B. A. Lipsky⁸, E. Senneville⁹, J. Teh¹⁰, G. D. Valk¹¹

¹Bone Infection Unit, Nuffield Orthopaedic Centre NHS Trust, Headington, Oxford, UK; 2Department of Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands; ³International Working Group on the Diabetic Foot (IWGDF), Heemstede, The Netherlands; 4Section of Infectious Diseases, Department of Medicine, University of Manitoba, Winnipeg, Canada; 5Department of Orthopedics, Malmö University Hospital, Malmö, Sweden; 6Department of Vascular Surgery, St. Georges Hospital Medical School, University of London, UK; ⁷Department of Diabetes and Endocrinology, Nottingham University Hospitals Trust, Nottingham, UK; ⁸Veterans Administration Puget Sound Heath Care System & University of Washington, Seattle, Washington, USA; ⁹Department of Infectious Diseases, Hôpital Dron-Tourcoing, France; 10 Department of Radiology,

Summary

The International Working Group on the Diabetic Foot appointed an expert panel to provide evidence-based guidance on the management of osteomyelitis in the diabetic foot. Initially, the panel formulated a consensus scheme for the diagnosis of diabetic foot osteomyelitis (DFO) for research purposes, and undertook a systematic review of the evidence relating to treatment. The consensus diagnostic scheme was based on expert opinion; the systematic review was based on a search for reports of the effectiveness of treatment for DFO published prior to December 2006.

The panel reached consensus on a proposed scheme that assesses the probability of DFO, based on clinical findings and the results of imaging and laboratory investigations.

The literature review identified 1168 papers, 19 of which fulfilled criteria for detailed data extraction. No significant differences in outcome were associated with any particular treatment strategy. There was no evidence that surgical debridement of the infected bone is routinely necessary. Culture and sensitivity of isolates from bone biopsy may assist in selecting properly targeted antibiotic regimens, but empirical regimens should include agents active against staphylococci, administered either intravenously or orally (with a highly bioavailable agent). There are no data to support the superiority of any particular route of delivery of systemic antibiotics or to inform the optimal duration of antibiotic therapy. No available evidence supports the use of any adjunctive therapies, such as hyperbaric oxygen, granulocyte-colony stimulating factor or larvae.

We have proposed a scheme for diagnosing DFO for research purposes. Data to inform treatment choices in DFO are limited, and further research is urgently needed. Copyright © 2008 John Wiley & Sons, Ltd.

IDSA GUIDELINES

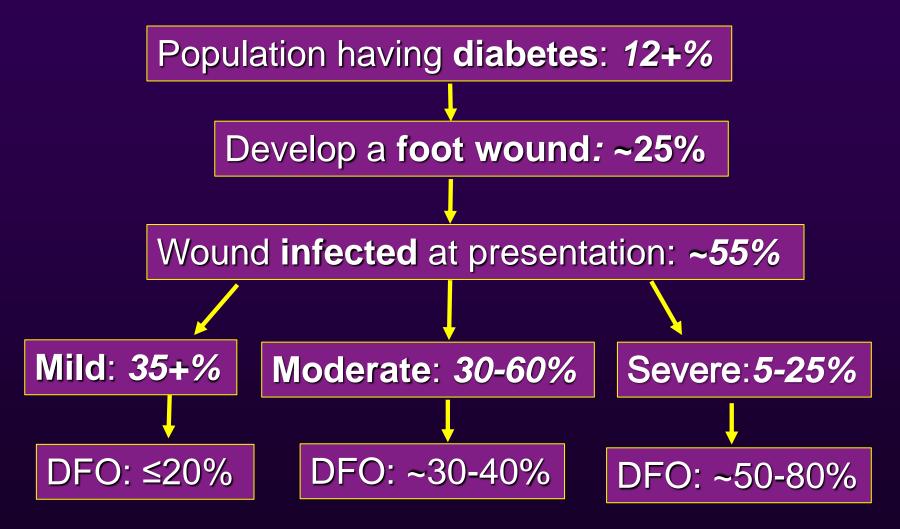
Clinical Infectious Diseases 2012;54(12):132–173

Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2012. DOI: 10.1093/cid/cis346

Clinical Practice Guideline for the Diagnosis and Treatment of Diabetic Foot Infections^a

Benjamin A. Lipsky, Anthony R. Berendt, Paul B. Cornia, James C. Pile, Edgar J. G. Peters, David G. Armstrong, H. Gunner Deery, John M. Embil, Warren S. Joseph, Adolf W. Karchmer, Michael S. Pinzur, and Eric Senneville

¹Department of Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle; ²Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Oxford; ³Department of Medicine, University of Washington, Veteran Affairs Puget Sound Health Care System, Seattle; ⁴Divisions of Hospital Medicine and Infectious Diseases, MetroHealth Medical Center, Cleveland, Ohio; ⁵Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands; ⁶Southern Arizona Limb Salvage Alliance, Department of Surgery, University of Arizona, Tucson; ⁷Northern Michigan Infectious Diseases, Petoskey; ⁸Department of Medicine, University of Manitoba, Winnipeg, Canada; ⁹Division of Podiatric Surgery, Department of Surgery, Roxborough Memorial Hospital, Philadelphia, Pennsylvania; ¹⁰Department of Medicine, Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; ¹¹Department of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, Maywood, Illinois; and ¹²Department of Infectious Diseases, Dron Hospital, Tourcoing, France



IWGDF Guidance on the diagnosis and management of foot infections in persons with diabetes

Prepared by the IWGDF Working Group on Foot Infections

	-					
Recommendations	Authors B. A. Lipsky ¹ , J. Aragón-Sánchez ² , M. Diggle ³ , J. Embil ⁴ , S. Kono ⁵ , L. Lavery ⁸ , É. Senneville ⁷ ,					
Introduction	V. Urbancic-Rovan ⁸ , S. Van Asten ^{6,8} , E. J. G. Peters ⁸ ; on behalf of the International Working Group on the Diabetic Foot (IWGDF)					
Pathophysiology	Institutions					
Diagnosis and Classification	Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland, and University of Oxford, Oxford, UK La Paloma Hospital, Las Palmas de Gran Canaria, Spain					
Soft tissue infection	 Nottingham University Hospitals Trust, Nottingham, UK University of Manitoba, Winnipeg, MB, Canada 					
Osteomyelitis	WHO-collaborating Centre for Diabetes, National Hospital Organization, Kyoto Medical Center, Kyoto Japan University of Tayan Southwestern Medical Center and Parkland Heavital Dallas Tayan					
Assessing severity	 University of Texas Southwestern Medical Center and Parkland Hospital, Dallas, Texas Gustave Dron Hospital, Tourcoing, France University Medical Centre, Ljubljana, Slovenia 					
Microbiological considerations	⁹ VU University Medical Centre, Amsterdam, The Netherlands					
Treatment	Address of correspondence Benjamin A. Lipsky. 79 Stone Meadow, Oxford, UK OX2 6TD balipsky@hotmail.com. iwgdf.org/guidelines/guidance					
Key Controversies	Diab Metab Res Rev 2016;32 Suppl 1:45					

Epidemiology of Diabetic Foot Infections

Lipsky et al, Clin Infect Dis 2012;54:132

Pathogenesis Diabetic Foot Osteomyelitis

 Soft tissue loss & infection leads to contiguous cortical bone infection necrosis

 Intramedullary spread of infection → bone death, persistence of infection (biofilm)

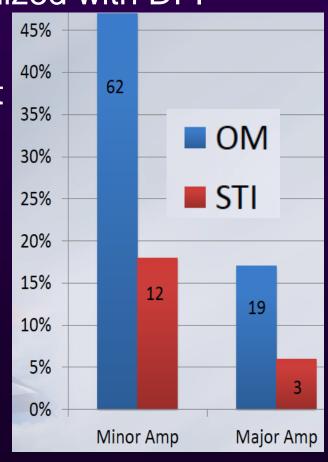
 Infection → soft tissue via sinus fracts; new bone (involucrum) may form

Infection/inflam'tion kills bone → sequestrum; may detach

Lipsky, Berendt. American College Physicians Medicine 2011

Implications of Presence of Osteomyelitis in DFI

Pts hospitalized for DFI; 1 center (Istanbul) in 2 years


Os	teomyelitis	No Osteo	p-
	(n=37)	(n=36)	Value
Length hospitlzn (d)	42 (29-51)	20 (13-30)	<0.001
Durtn antibiotic (d)	47 ± 20	22 ± 15	<0.001
Durtn IV antibiotic(d)	44 (31-65)	33 (23-46)	0.030
Time wound heal (d)	183 ±95	141 ± 65	0.030
Surgical procedures	24 (65%)	11 (31%)	<0.003
Minor amputation	22 (59%)	5 (14%)	< 0.001

Multluoglu, Lipsky et al, Scand J Infect Dis 2013;45:497

DFI: Worse Outcomes with Bone vs Soft Tissue Infxn

Retrospective review 200 pts hospitalized with DFI

- DFO dx: + bone culture or histology
- 133 pts (67%) had DFO, 80% forefoot
- Compared to STI, DFO significantly û
 - Overall amptns: 61% v 22%, OR 5.4
 - Minor amptns: 47% v 18%, OR 4.0
 - Major amptns: 17% v 5%, OR 3.6
 - Mean length of stay: 9.8 v 7.7 d, p=0.06

Hobizal et al, ISDF, The Hague 20 May 2015

Microbiology: Pathogens on Bone Biopsy DFO

<u>Variables</u>	<u>Lesens</u>	<u>Senneville</u>	Aragon-Sanchez
# Samples	80	76	176
Mean isol/sample	1.6 ± 1	1.54	_
%, by pathogen			
Staph aureus	33%	26%	47%
[MRSA	19%	10%	17%]
Coag-neg staph	14%	26%	11%
Streptococci	9%	12%	3%
Enterococci	12%	8%	1%
Gram - rods	20%	18%	29%
Pseud aerug	8%	2%	9%
Anaerobes	4%	5%	_

Lesens et al, Clin Microbiol Infect 2011;17:285

Microbiome in DFO: PCR vs Culture of Bone

Conventional Culture (n=26)		16s rRNA Sequencing (n=23)		
Gram + cocci	20 (77%)	Gram+ cocci	23 (100%)	
S. aureus, total	13 (50)	Staphylococcus spp.	20 (87)	
Coag – staphylococci	11 (42)	Coag – staphylococci	Not tested	
Streptococcus spp.	6 (23)	Streptococcus spp.	13 (57)	
Enterococcus spp.	2 (8)	Enterococcus spp.	O	
Gram + bacilli	1 (4)	Gram + bacilli*	18 (78)	
Corynebacterium spp	0. 1 (4)	Corynebacterium spp	o.18 (78)	
Gram – bacilli	13 (50)	Gram – bacilli	10 (44)	
P. aeruginosa	4 (15)	Pseudomonas spp.	5 (22)	
Anaerobes	6 (23)	Anaerobes*	20 (87)	
 Facultative 	3 (12)	 Facultative 	17 (74)	
- Obligate	3 (12)	- Obligate	20 (87)	
Polymicrobial infxn	16 (64)	Polymicrobial infxn	21 (91)	

^{*} p<0.001 for conventional vs molecular 16s

van Asten et al, Eur J Clin Micro Inf Dis 2016;35:293

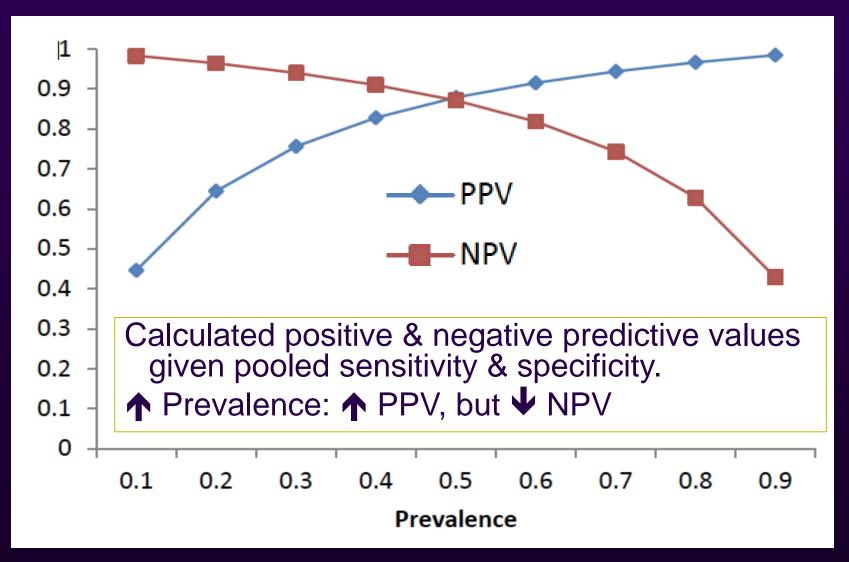
Diagnosing DFO: Current Methods

- Clinical
 - -History: long wound duration; recurrent infections
 - -Exam: deep (>3mm)/large (>2 cm²) ulcer; bony prominence; visible bone/joint; "sausage" toe
 - Probe-to-bone: useful if done/interpreted correctly

Dinh et al *Clin Inf Dis* 2008;47:519; Butalia et al *JAMA* 2008;299:806 Berendt et al. *Diabetes Metab Res Rev* 2008;24 Suppl 1:S145

ı BAL © 2016 **■**

The Probe-to-Bone Test in DF Osteomyelitis


Ertugrul BM, Lipsky BA. Diab Foot Ankle 2013;4:10

Performance Characteristics PTB Test

11
- 11
64
630
180
11
16
49

Lam et al, Clin Infect Dis 2016 (in press)

The Importance of Prevalence in PTB Test

Lam et al, Clin Infect Dis 2016 (in press)

Diagnosing DFO: Current Methods

- Clinical
 - History: long wound duration, recurrent infection
 - Exam: deep(>3mm)/large (>2 cm²) ulcer, bony
 prominence, visible bone/joint, "sausage" toe
 - Probe-to-bone: useful if done/interpreted correctly
 - Blood tests: WBC, ESR, C-RP, PCT, ? biomarkers

Dinh et al *Clin Inf Dis* 2008;47:519; Butalia et al *JAMA* 2008;299:806 Berendt et al. *Diabetes Metab Res Rev* 2008;24 Suppl 1:S145

• BAL © 2016 <u>•</u>

- CRP (>1.4)

+ PCT (>0.3)

Meta-analysis*: Biomarkers for Diagnosing DFO

lest	Sensitivity	Specificity	
Single test (poole	ed studies)		
- ESR (n=6)	.81 (.7188)	.90 (.7596)	
- WBC (n=3)	.56 (.3674)	.84 (.7690)	
Combinations (1	study each)		
- CRP (>3.2)	.85		
+ depth (>3mm	1.00	.55	

*8/195 studies met inclusion criteria

.83

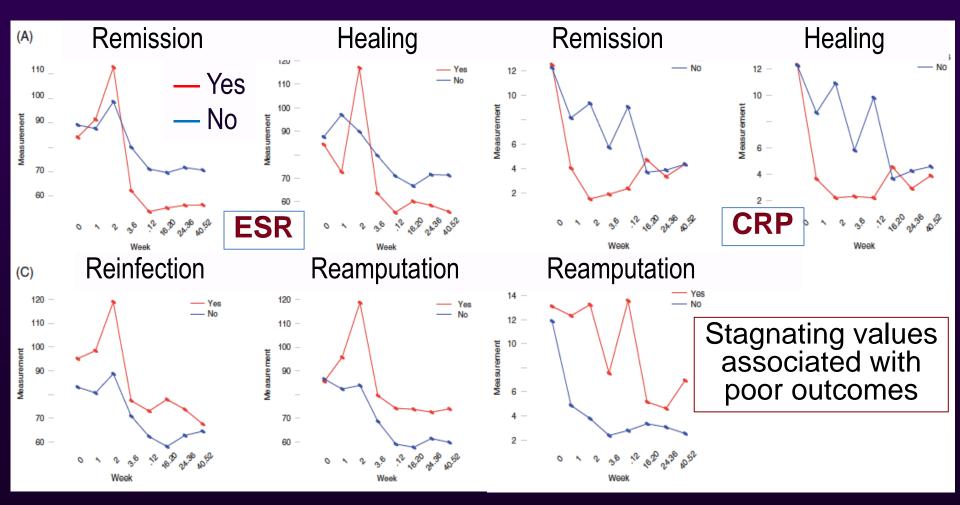
.71

van Asten et al, Curr Diabetes Rev 2015 (epub Jul 12)

.85

.81

Value of Inflammatory Markers in DFO: Pilot Study


- 35 pts hospitalized with infected DFU; 24 with DFO
- Inflammatory markers measured @ baseline, 3, 6 wks ESR, CRP, PCT, IL-6, IL-8, tumor necrosis factor alpha (TNFα), monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1 alpha (MIP1α)
- Results: no significant differences between grps except:
 - -PCT ↑ in non-osteo group at baseline (p=0.05)

 - -MCP-1 ↑ increased with therapy (p=0.002)
- Conclusion: inflammatory markers have limited use for differentiating bone vs soft tissue DFI

van Asten et al, Int Wound J 2015 (epub 3 Dec)

Inflammatory Markers Over 1 Year F/U of DFO

122 pts with bone bx proven DFO; overall ulcer healing rate 38%

van Asten et al, Int Wound J 2016 (epub March)

Diagnosing DFO: Current Methods

- Clinical
 - History: long wound duration, recurrent infection
 - Exam: deep (>3mm)/large (>2 cm²) ulcer, bony
 prominence visible bone/joint, "sausage" toe
 - Probe-to-bone: useful if done/interpreted correctly
 - Blood tests: WBC, ESR, C-RP, PCT, ? biomarkers
- Imaging
 - Plain x-ray: limited sensi (early) & specif (late)
 - Radionuclide scans: WBC>bone; non-specific
 - MRI: best current test; marrow edema, soft tissue
 - SPECT/CT, PET/CT, PET/MRI promising; F/U

Dinh et al *Clin Inf Dis* 2008;47:519; Butalia et al *JAMA* 2008;299:806 Berendt et al. *Diabetes Metab Res Rev* 2008;24 Suppl 1:S145

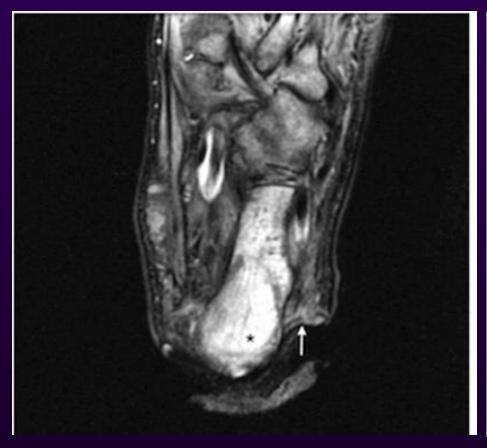
BAL © 2016

Typical Features DFO on Plain X-rays

- Periosteal reaction or elevation
- Loss of bone cortex with bony erosion
- Focal loss cortical trabecular pattern
- Lucency in bone marrow
- Bone sclerosis, with or without erosion
- Presence of sequestrum: dead bone; radiodense
- Presence of involucrum: layer of new bone growth
- Presence of cloacae: opening in involucrum or cortex
- Evidence of sinus tract from bone to soft tissue

Lipsky et al, Diab Metab Res Rev 2016 Jan;32 Suppl 1:45

Radiographic Features of Osteomyelitis


Relative Utility MRI Findings for Dx DFO

Finding Relative Utility Equivocal sequences; post-contrast enhancement Joint effusion & enhancement, subluxation Equivocal & dislocation, bone frag^{mentation} & proliferation, erosion &destruction, intraarticular bodies Periosteal reaction Subtending skin ulcer Ulcer: area >2 mm or depth >3 mm Tenosynovitis Focal involvement Septic arthritis The "ghost sign" (contrast)

Leone et al, Skel Radiol 2016; epub 17 Feb

Sinus tract, or abscess

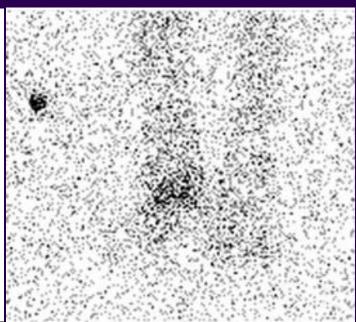
MRI in Diabetic Foot Osteomyelitis

Axial T2 fat-suppressed

Sagittal T1

SPECT/CT

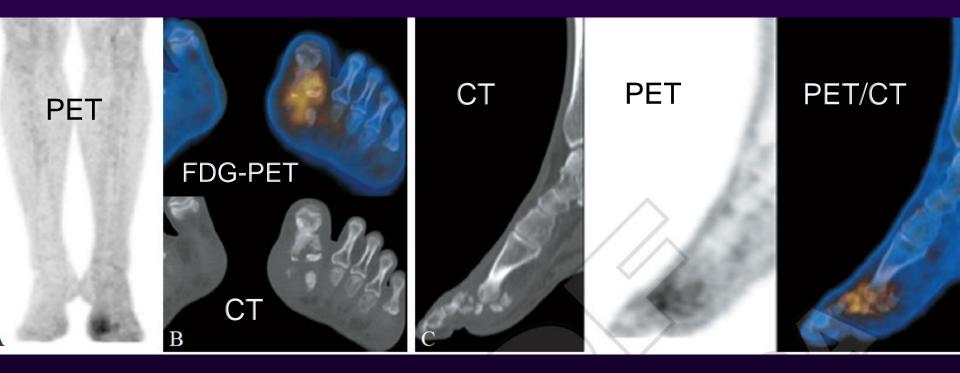
3 phase bone scan: can't differentiate recent post-op change in 1st & 2nd toes from midfoot osteomyelitis


In¹¹¹ WBC differentiates infection from post-op changes but poor anatomical correlation

Fusion WBC SPECT/CT

 specificity & good

 anatomical detail



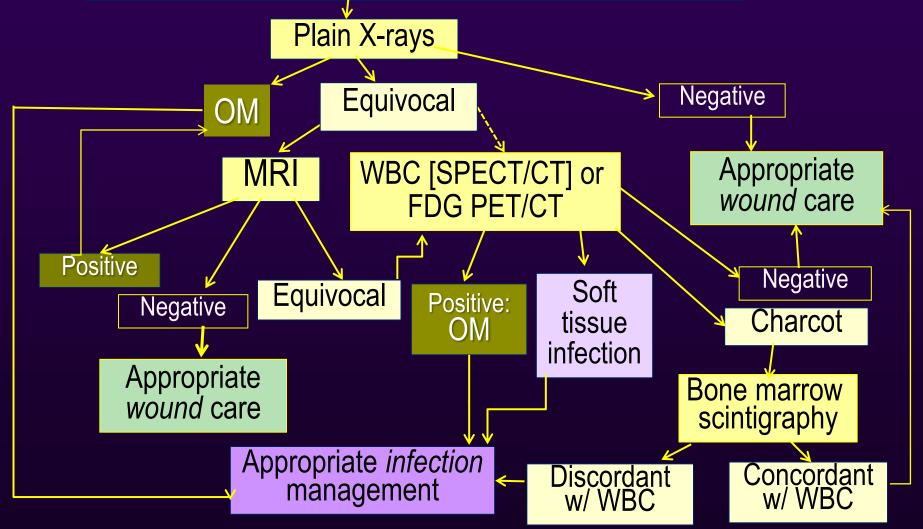
Fridman et al, Clin Pod Med Surg 2014;31:43

FDG-PET/CT for Diabetic Foot Osteomyelitis

L foot plantar ulcer (A) FDG-PET maximal intensity projection with focus of **PET** projection (B) coronal, (C) sagittal CT PET/CT: focus of uptake in fragmented 1st MT (+ bone culture)

Israel, Sconfienza, Lipsky. QJ Nucl Med Mol Imag 2013;58:33

Advanced Imaging for Diabetic Foot Osteomyelitis


Imaging technique	+ LR	- LR	Advantages	Limitations
MRI	3.8	0.14	Good spatial resolution, high accuracy, can assess both soft tissues and bone	Reduced performance with severe ischemia
18F-FDG PET	5.6	0.4	Good spatial resolution	Limited availability; high cost
99mTc / 111In labelled-leukocytes scans	4.73 / 2.31	0.12 / 0.38	High sensitivity; moderate specificity	Requires blood handling; time consuming
^{99m} Tc or ^{67m} Ga SPECT/CT	3.0	0.18	Good spatial resolution	Limited availability
^{99m} Tc-UBI 29-41 scan	Max* [*Specific	Min* city=100%]	Very high predictive values	Limited clinical data
99mT bone scan	1.11	0.71	Widely available	Low specificity

Lipsky et al, *Diab Metab Res Rev* 2016 Jan;32 Suppl 1:45

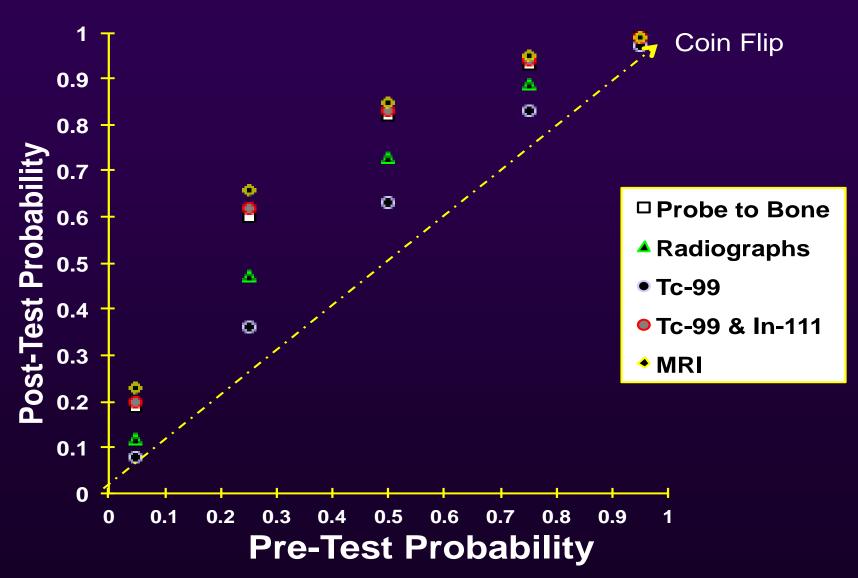
UW/GTC/UO

Approach to Diagnosing Diabetic Foot Osteomyelitis

Pt with suspected diabetic foot osteomyelitis (OM)

Israel, Sconfienza, Lipsky. Quart J Nucl Med Molec Imag 2013;58:33

BAL © 2016 -


Likelihood Ratios of Diagnostic Tests for DFO*

+ LR	- LR
5.5	0.54
7.2	0.48
1.5	0.84
6.4	0.39
11.0	0.34
2.3	0.63
1.4	0.40
4.7/2.3	0.12/.038
3.8	0.14
3.0	0.18
5.6	0.40
	5.5 7.2 1.5 6.4 11.0 2.3 1.4 4.7/2.3 3.8 3.0

^{*}Approximations based on variable number of heterogeneous studies Lipsky et al, IWGDF DFI guidance 2015; Markanday *OFID* 2014; 1(2):ofu060

• *BAL* © 2016 <u>-</u>

Importance of Pre-test Probability in Dx DFO

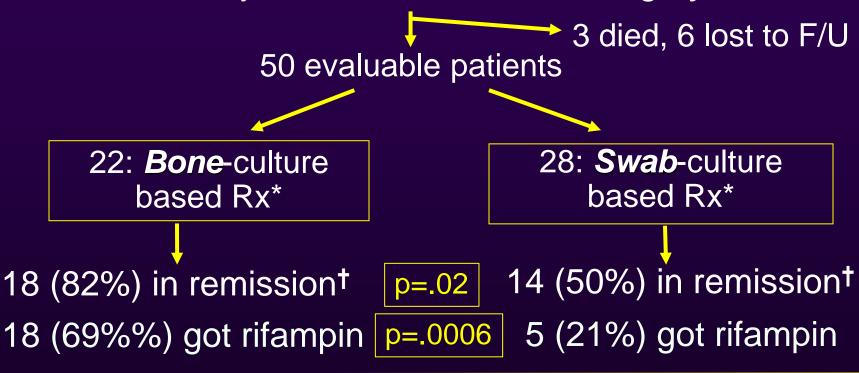
Wrobel *JAPMA* 1998;88:337

Diagnosing DFO: Current Methods

- Clinical
 - History: long wound duration, recurrent infection
 - Exam: deep (>3mm)/large (>2 cm²) ulcer, bony prominence visible bone/joint, "sausage" toe
 - Probe-to-bone: useful if done/interpreted correctly
 - Blood tests: WBC, ESR, C-RP, PCT, ? biomarkers
- Imaging
 - Plain x-ray: limited sensi (early) & specif (late)
 - Radionuclide scans: WBC>bone; non-specific
 - MRI: best current test; marrow edema, soft tissue
 - SPECT/CT, PET/CT, PET/MRI quite promising
- Bone Biopsy: culture & histology- criterion standard

Dinh et al *Clin Inf Dis* 2008;47:519; Butalia et al *JAMA* 2008;299:806 Berendt et al. *Diabetes Metab Res Rev* 2008;24 Suppl 1:S145

BAL © 2016


Bone Biopsy for Diabetic Foot Osteomyelitis

Courtesy: Drs. E. Senneville & E. Beltrand

Value of Bone Culture in DFO

59 consecutive diabetic patients with foot osteomyelitis Initially treated without bone surgery

*Median duration 12 wks

† ≥1 year after end of Rx

Senneville et al, *Diabetes Care* 2008;31:637

Value of a Negative Bone Culture

341 pts with suspected DFO: percutaneous bone bx; ≥2 yr F/U

275 culture + 66 culture -

[25 lost to F/U or excluded]

41 enrolled

16 (39%) healed

25 unhealed

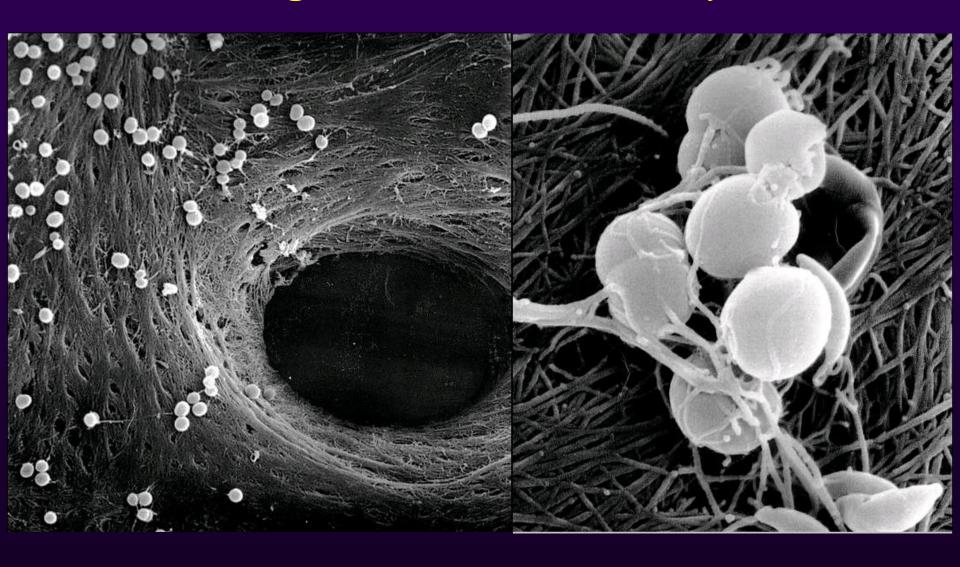
10 clinically/imaging stable 15 repeat bone bx

6 likely not osteo 4 suspected osteo 9 culture - 6 cult +

True negative : 31 (75%)

False negative: 10 (25%)

Senneville et al, Diabet Med 2012;29:56

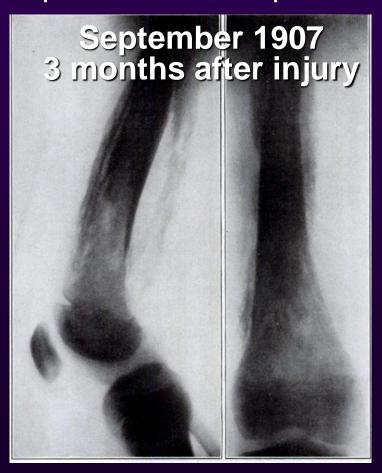

■ BAL © 2016 <u>=</u>

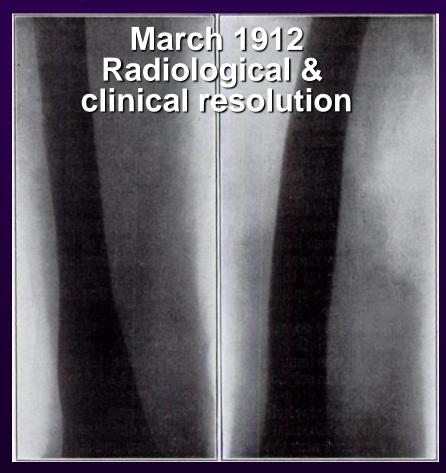
In Which Situations Is Diagnostic Bone Biopsy Most Recommended?

- Uncertainty regarding the diagnosis of osteomyelitis despite clinical and imaging evaluations
- Culture data from soft tissue specimens unclear
- Failure to respond to empiric antibiotic therapy
- Plan to insert metalware in bone at affected site
- Desire to use antibiotic agents that may be especially effective for osteomyelitis but have a high potential for selecting resistant bacteria (eg, rifampin, FQs)

Lipsky et al, [IDSA DFI guidelines] *Clin Infect Dis* 2012;54:1679 Lipsky et al, [IWGDF DFI guidance] *Diab/Metab Res Rev* 2015 (in press)

Treating Diabetic Foot Osteomyelitis

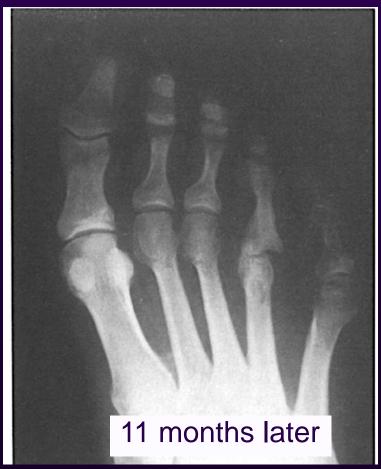



Key Questions About Treatment of Diabetic Foot Osteomyelitis

- What are the most appropriate antibiotic regimens
 - Specific single, or combinations of, agent(s)
 - Route of therapy (IV vs oral vs local)
 - Duration of therapy
- When is surgical resection of bone required
- How do we know when we have achieved remission or cure?

Exclusively Surgical Treatment of Osteomyelitis

10 yo with post-traumatic osteomyelitis of L femur; pus drained, sequestrum removed; later sinus curetted



R. Hammond, J Bone Joint Surg Am 1913;s 2-10:569

Exclusively Antibiotic Therapy of DFO

Of 51 cases, 53% resolved with antibiotic w/o bone surgery

Bamberger et al *Am J Med* 1987;83:653

Resolution of DFO With Antibiotic Therapy Alone

Mutluoglu, Lipsky (in submission)

Can Osteomyelitis Be Cured *Without* Surgical Resection of Bone?

- Review of reported patients managed with antibiotics & little or no surgical debridement¹
 - -546 total patients in 11 studies from 1987-2002
 - –Mostly given oral fluoroquinolones, for ≥3 mos
 - -Satisfactory response seen in ~65\(\infty\) (25-88\(\infty\)
- In 4 more recent observational studies²⁻⁵ (total of 443 patents): 63-79% remission rates
- All retrospective studies, mostly forefoot cases

```
<sup>1</sup>Jeffcoate, Lipsky. Clin Infect Dis 2004;39 Suppl 2:S115;

<sup>2</sup>Acharya et al, Diab Res Clin Pract 2013 Sep;101(3):e18

<sup>3</sup>Ulcay et al, Pak J Med Sci 2014;30:28; <sup>4</sup>Zeun et al, IJLEW 2015 (1 Sept)

<sup>5</sup>Jordano-Montanez et al, Enferm Infecc Microbiol Clin 2014;32:555
```

Outcome of S. aureus DFO by Treatment Type

Retrospective cohort study 74 pts; + bone culture (35% MRSA) Bone surgery in 47% (mostly forefoot); rest antibiotic alone

	<u>Medical</u>	<u>Surgical</u>	<u>P</u>	
-Favorable outcome	87%	80%	NS	
-Hospitalized >24 hours	49%	94%	<.001	
-Mean hospital LOS (days)	17 ± 3	50 ± 12	.004	
-Median duration abx (wks)	8 (6-52)	5 (2-44)	.001	
-Antibiotic d/c 2° side effects	33%	9%	.01	

- Mortality on F/U (mean 21 months): 20% [No significant diff]
- New episode (noncontiguous) DFO: 32% medical v surgical

Lesens et al, Int J Lower Extrem Wounds 2014; Dec 16 pii

RCT of Primarily Antibiotic vs Surgery for DFO

52 patients met inclusion criteria

25 randomized to *antibiotics* (90 days, culture modified)

27 randomized to *surgery* (conservative, + 10 d abx)

1 dropped out

24 treated

22 operated

5 dropped out

2 died 4 required surgery

18 (75%) cured

19 (86%) cured 3 needed minor amputation

1 required minor amputation

3 healed w/ surgery

No signif. differences:

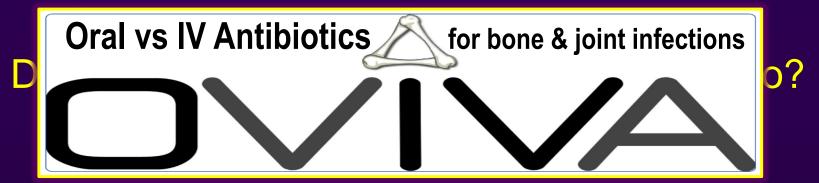
- -Percent cured
- -Time to cure
- Complications

Reulceration: 9.5% abx; 21% surgery

Lazaro-Martinez et al, Diabetes Care 2014; 37:789

Primarily Surgical vs Medical Treatment for DFO: Individualizing the Choice

Surgical


- Substantial bone necrosis
- Fxnly non-salvageable foot
- Pt is non-ambulatory
- 1 risks antibiotic problems
- No available active antibiotic
- Uncorrectable foot ischemia
- Patient preference

Medical

- Pt too unstable for surgery
- Bad post-op mechanics likely
- No other need for surgery
- Small, forefoot lesion
- No skilled surgeon available
- Surgery costs prohibitive
- Patient preference

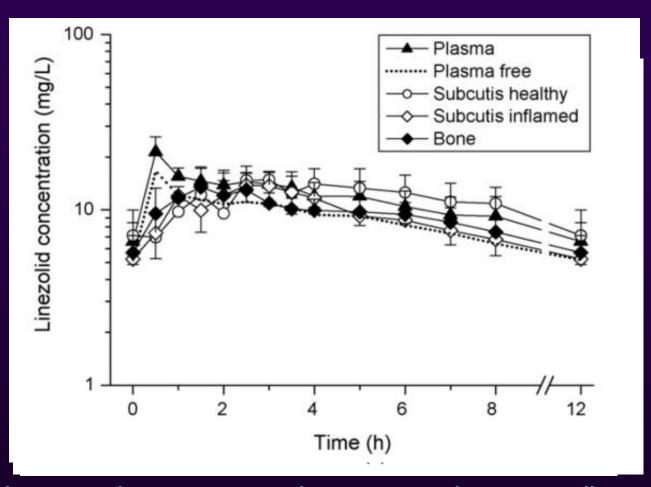
Lipsky BA. Diabetes Care 2014;37:593

UW/GTC/UO

- Pilot study in Oxford; then enrolled 1060 pts in 30 UK centers
- Bacterial infection types: osteomyelitis (DFO); prosthetic joint infection; orthopedic device/bone-graft; spinal infection
- Open label: ~1 wk IV abx for all, then randomized to ≥5 wks of IV or oral antibiotic regimen (clinicians' choice of agent[s])
- Outcomes: assessed at one year follow up visit
 - 1° is definite failure (+ culture or dx histology from bone or periprosthetic tissue, draining sinus or pus from bone
 - 2°: SAE, IV line compltn, Rx failure; early Rx termination; resource allo^{cation}; QoL; hip/knee score; Rx adherence
- Endpoint review committee (blind to Rx): all potential failures

Li et al. *Trials* 2015;16:583

Bone Penetration of Antibiotics


<u>Antibiotic</u>	Mean [Bone/Serum] Ratios
Levofloxacin	0.36-1.0
Ciprofloxacin	0.27-1.2
Moxifloxacin	0.33-1.05
Vancomycin	0.05-0.67
Linezolid	0.2-0.51
Daptomycin	1.17
Clindamycin	0.21-0.45
Cefazolin	0.179
Ceftriaxone	0.07-0.17
Cefuroxime	0.04-0.55
Rifampin	0.08-0.57

Lalani T. UpToDate 2014

Bone Penetration of Antibiotic Agents in DFO

Fosfomycin ¹

- Daptomycin ²
- Linezolid ³

Substantial variability in mean bone penetration among drugs, studies

¹Schintler V et al. J Antimicrob Chemother 2009; ²Traunmüller F et al. J Antimicrob Chemother 2010; ³Traunmüller F Int J Antimicrob Agents 2010

Duration of Antibiotic Treatment for DFO

- Multicenter RCT: 6 vs 12 weeks of antibiotic therapy
 - Pts w/ + bone culture; w/o ischemia; no surgical Rx
 - Remission: no evidence infection, stable/improved x-rays, overlying wound healed X ≥12 months f/u
- Results: 40 pts enrolled 2007-2009
 - Characteristics of 2 treatment groups similar
 - Remission rates:
 - 6 weeks: 12/20 (60%)
 - 12 weeks: 14/20 (70%) [p=NS]
 - Signif.

 ✓ GI adverse events with 6 wks (15 v 45%)
 - No differences: relapse; need for resection; spread

Tone et al, *Diabetes Care* 2015;38:302

Antibiotic Beads or Bone Grafts for Treating DFO

Panagopoulos *Int J Low Extrem Wounds* 2015;14:87

Xanthopoulou et al, ECCMID 2016

Local Antibiotics for Treating Osteomyelitis

PMMA (beads, cement), CaSO4 (pellets, beads), Polylactic acid

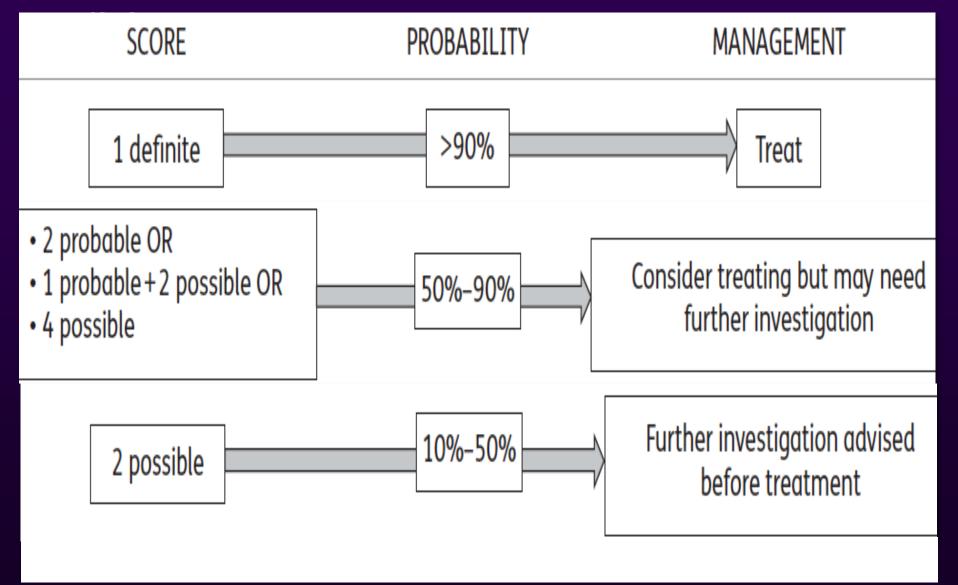
Advantages

- Hi local antibiotic level
- Fills dead space
- Low systemic concentrations
- PLA & CaSO4 don't require bead removal

Disadvantages

- Variable formulations, sizes
- Requires pharmaceutical grade antibiotic powders
- Subinhib conc → resistance
- ? Inhibition of bone healing
- Operation to remove PMMA

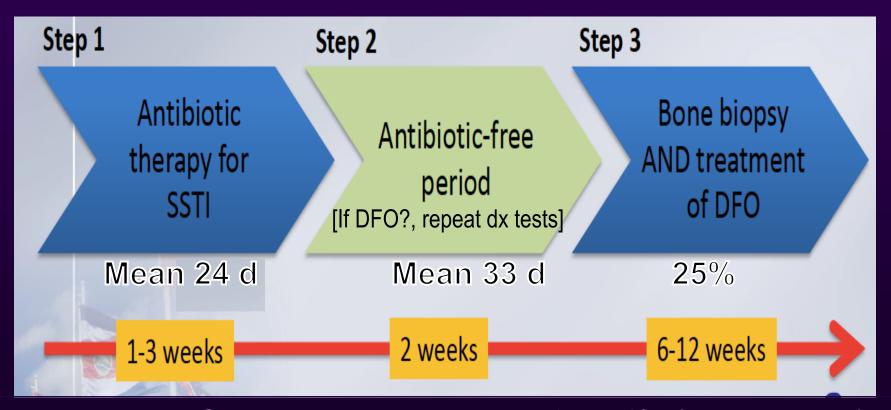
*Literature search (July 2014) 3770 papers: ? best system, antibiotic, duration, need for surgery or systemic antibiotics


Barth et al, *Int J Antimicrob Ag* 2011;38:371 *Panagopoulos, et al *Int J LE Wound* 2015;14:87

IDSA DFI Guidelines on Treating Bone Infection

Extent of Surgery	Route of Rx	Duration of Rx
No residual infected tissue (eg, post-amputation)	Parenteral or oral	2 - 5 days
Residual infected soft tissue only	Parenteral or oral	2 – 4 weeks
Residual infected (but viable) bone	Initial parenteral then oral switch	4 – 6 weeks
Dead bone present no bone resection	Initial parenteral then oral switch	? ≥ 3 months

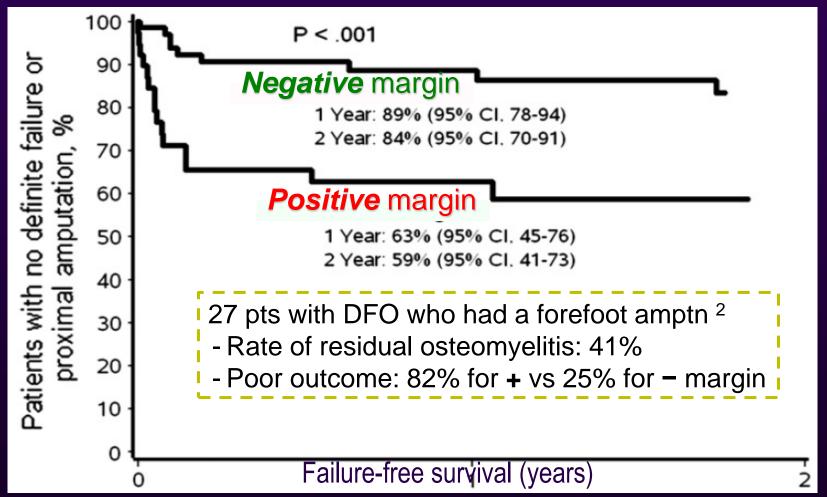
Lipsky et al,[IDSA DFI guidelines] Clin Infect Dis 2012;54:132


Proposed Management Scheme DFO: IWGDF

Berendt et al, Diab Metab Res Rev 2008;24 Suppl 1:S145

Proposed Sequential Approach for Concomitant Soft Tissue Infection & Suspected Osteomyelitis

Retrospective study, 32 pts, Tourcoing 2006-13



41% had DFO; 59% in remission @ final f/u (mean 3.9 y)

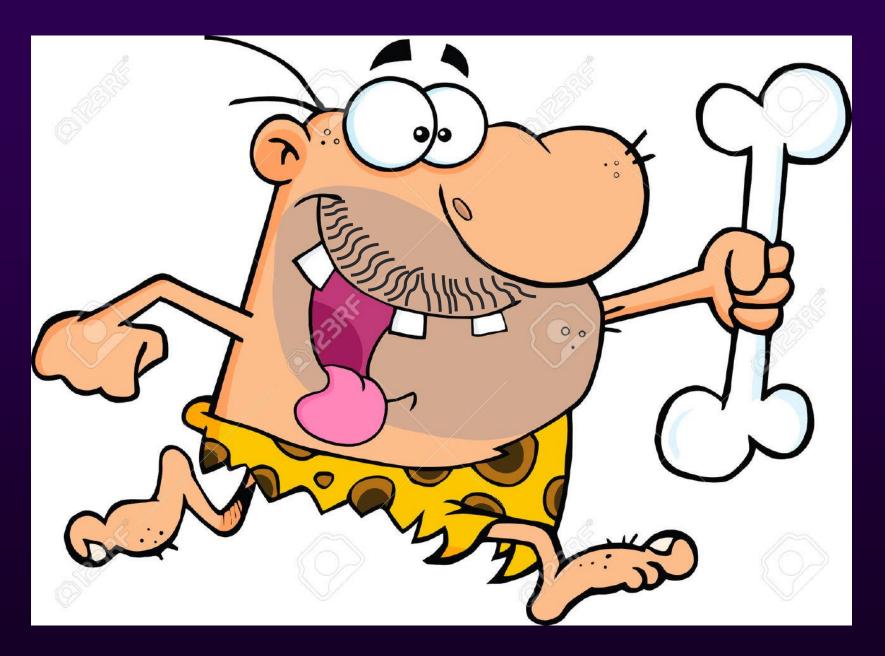
Berthol, Int Symp Diab Foot, Hague 2015; Markanday OFID 2014; 1(2):ofu060

Effect of Residual Osteomyelitis After Resection

111 DFO pts: 39 (35%) histology + margins for osteomyelitis¹

¹Kowalski et al, *J Foot Ankle Surg* 2011;50:171 ²Atway et al, *J Foot Ankle Surg* 2012;51:749

How Do We Know if a Patient is Responding To Antibiotic Treatment?


- Decreasing inflammatory markers
- Resolution of local soft tissue infection
- Healing of adjacent/overlying wound
- Evolving radiographic findings c/w healing
- Lack of uptake on radionuclide studies

Consider "in remission" until F/U @ least 1 year

Lipsky BA, et al. IDSA: Clin Infect Dis 2012;54:132 Lipsky BA, IWGDF: Diab/Metab Res Rev 2016;32 Suppl 1:45

Conclusions: Strategies for Managing DFO

- Diagnosis
 - -PTB test is useful if done & interpreted correctly
 - ESR is probably still best serological test
 - If advanced imaging needed, MRI usually preferred, but SPECT/PET/CT/MRI promising
 - -Bone biopsy (culture/histology) criterion standard
- Treatment
 - -Bone culture & sensitivity helps guide therapy
 - Oral antibiotic therapy usually adequate
 - -Therapy for 6 weeks usually adequate
 - Many patients can be treated without surgery
 - Defining "remission" is still difficult

BAL © 2016