

Bakteriyolojik Tanı Yöntemlerinde Gelişmeler

Dr Gökhan AYGÜN CTF Tıbbi Mikrobiyoloji AD

İnfeksiyon hastalığında laboratuvar

 İnfeksiyon şüphesi olan hastada hiçbir laboratuvar incelemesi anamnez ve fizik muayenenin yerini alamaz!!!

İnfeksiyon Hastalıklarında laboratuvar

 Bir odak belirlenemeyen infeksiyon şüpheli hastalarda laboratuvar (İnfeksiyona yatkınlık? İnfeksiyonu öngörmek?)

Etkeni saptamakta laboratuvar

Ciddi Bakteriyal İnfeksiyon?Sepsis?

Mikrobik yapılar: Endotoksin, teikoik asit,...

• İmmünolojik Tanı:

CRP, Prokalsitonin, IL-6, IL-8,

Tanı ve prognoz yönünden yol gösterici!

OPEN

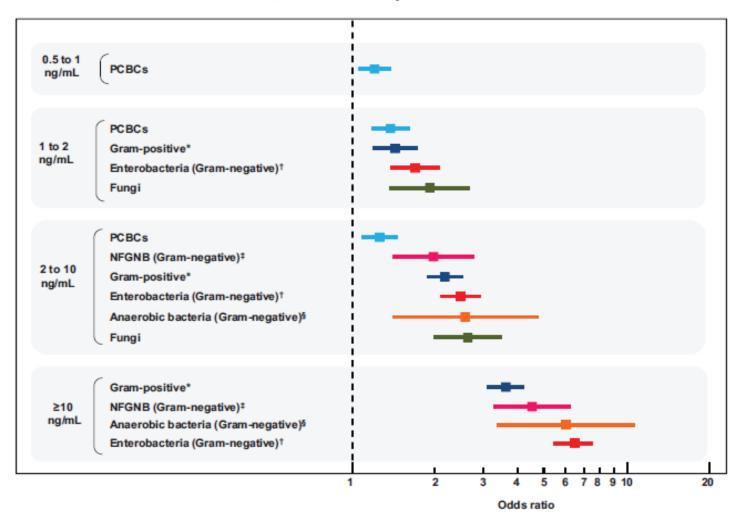
Diagnostic Accuracy of Procalcitonin for Predicting Blood Culture Results in Patients With Suspected Bloodstream Infection

An Observational Study of 35,343 Consecutive Patients (A STROBE-Compliant Article)

Nejla .

2.2 ng/mL [IQR 0.6–12.2]), and the lowest procalcitonin concentration was observed in patients with negative blood cultures (median 0.3 ng/ mL [IQR 0.1-1.1]). With optimal thresholds ranging from ≤ 0.4 to ≤0.75 ng/mL, procalcitonin had a high diagnostic accuracy for excluding all pathogen categories with the following negative predictive values: Gram-negative bacteria (98.9%) (including enterobacteria [99.2%], nonfermenting Gram-negative bacilli [99.7%], and anaerobic bacteria [99.9%]), Gram-positive bacteria (98.4%), and fungi (99.6%). A procalcitonin concentration ≥10 ng/mL was associated with a high risk of Gram-negative (odds ratio 5.98; 95% CI, 5.20-6.88) or Grampositive (odds ratio 3.64; 95% CI, 3.11-4.26) bacteremia but dramatically reduced the risk of PCBCs or fungemia. In this large real-life setting experience with more than 35,000 patients, procalcitonin was highly effective at excluding bloodstream infections regardless of pathogen categories. The results from our study are limited by its cross-sectional design and deserve to be validated in prospective longitudinal studies.

(Medicine 94(44):e1774)


D,
ia, MSc.

OPEN

Diagnostic Accuracy of Procalcitonin for Predicting Blood Culture Results in Patients With Suspected Bloodstream Infection

An Observational Study of 35,343 Consecutive Patients (A STROBE-Compliant Article)

Sepsise yatkınlık tanımı

- PIRO
- Predisposition

- MBL gen polimorfizmi
- TLR gen polimorfizmi
- •

Sepsise yatkınlık tanımı

Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease

Lancet Infect Dis 2005; Nicolas W.J. Schröder and Ralf R. Schumann 5: 156-64

Reference	Association studied	SNP studied	Number of patients	Number of controls	Results: patients vs controls (%)	pvalue
Arbouret al ^m	Hyporesponsiveness to inhaled lipopolysaccharide	Asp299Gly Thr399lle	31	57	22.6 vs 5.8 Cosegregating	0.029
Read et al ¹⁰	Meningo coccal disease	Asp299Gly	1047	879	5.9vs 6.5 Not significant	Not significant
Allen et al ^{eg}	Meningococcal disease	Asp299Gly Thr399lle	252	251	20-2 vs 20-3 Not significant	0.9
Tal et al*4	Respiratory syncytial virus infection	Asp299Gly Thr399lle	99	82	20-2 vs 4-9	0.003
Feterowski et al ¹⁶	Sepsis after surgery	Asp299Gly Thr399lle	153	154	6.5vs 12-3 Not significant	0.12
Lorenz et al ^m	Septic shock	Asp299Gly Thr399lle	91	73	5.5vs 0 Asp299Gly only	0.05
Child et al ^{sp}	Severe inflammatory response syndrome	Asp299Gly Thr399lle	94	-	Non-significant trend towards higher mortality	0.08
Agnese et al ¹¹	Bacterial infection (Gram-negative)	Asp299Gly Thr399lle	77	39	18-0 vs 12-8 Significant when stratified for SNP or no SNP	0.004

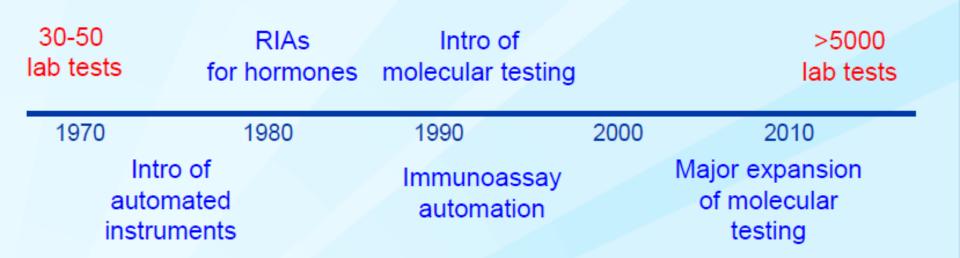
Biomarkers: The Future

Steven P. LaRosa, мр^{а,b,*}, Steven M. Opal, мр^{а,c}

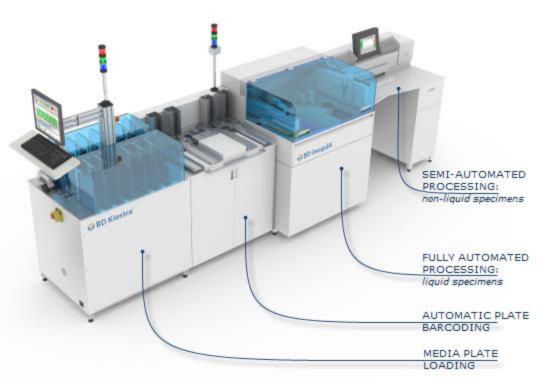
Crit Care Clin 27 (2011) 407-419 doi:10.1016/j.ccc.2010.12.012

Gene Product	SNP/Amino Acid Changes	Clinical Findings		
TLR4	Asp299Gly in peptide sequence	Possible increased susceptibility to gram-negative bacteria and aspergillosis, lower risk of legionellosis		
TLR2	SNPs in TLR2 gene coding regions	Associated with increased risk of infection from gram-positive bacteria		
CD14	C-159T promoterpolymorphism	TT homozygotes at position –159 reported to have increased levels of soluble CD14 and increased risk of septic mortality		
MBL	SNPs in exon 1 of MBL gene	Associated with low MBL levels and increased risk of severe infection		
IL-6	– 174 G/Cpolymor phism	Conflicting reports that this promoter polymorphism alters IL-6 levels and increases incidence of sepsis		
−308 of TNF-α gene asso		Polymorphism in promoter region of TNF-a gene associated with increased risk of sepsis in some studies		
Protein C	–1654C/T or –1641G/A	Polymorphisms in this noncoding region associated with increased risk of death from sepsis		
PAI-1	SNP in promoter region	Increased production of PAI-1 leads to reduced fibrinolysis and poor outcome in meningococcal		

İnfeksiyon Hastalıklarında laboratuvar

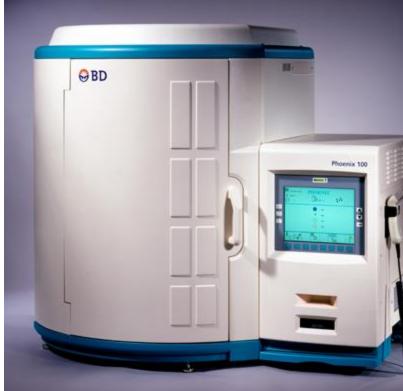

 Bir odak belirlenemeyen infeksiyon şüpheli hastalarda laboratuvar (İnfeksiyona yatkınlık? İnfeksiyonu öngörmek?)

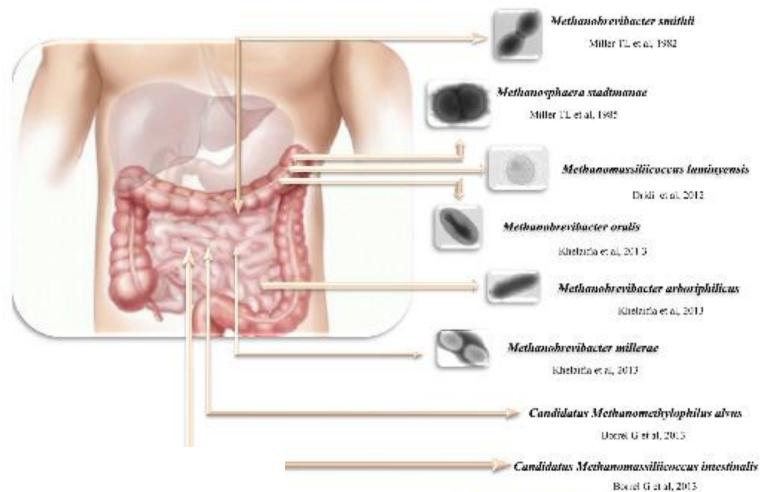
Etkeni saptamakta laboratuvar


Etkeni tanımlamada temel yenilikler

- Kültür yöntemlerinde gelişmeler
- İmmünolojik yaklaşım (sitokin temelli)
- Moleküler Biyoloji
- MALDI-TOF
- Otomatizasyon
- Diğer yenilikler?

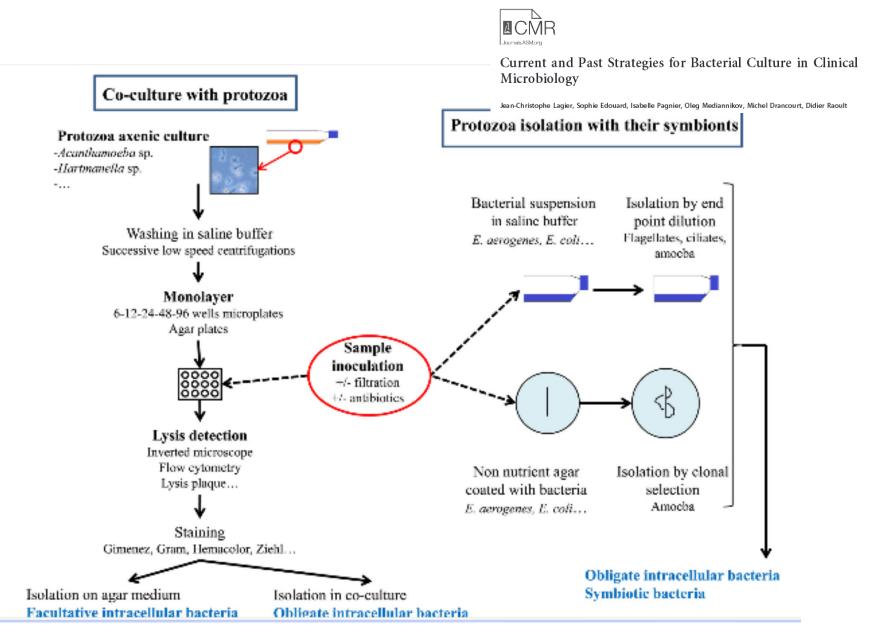
Clinical Laboratory Testing - Today





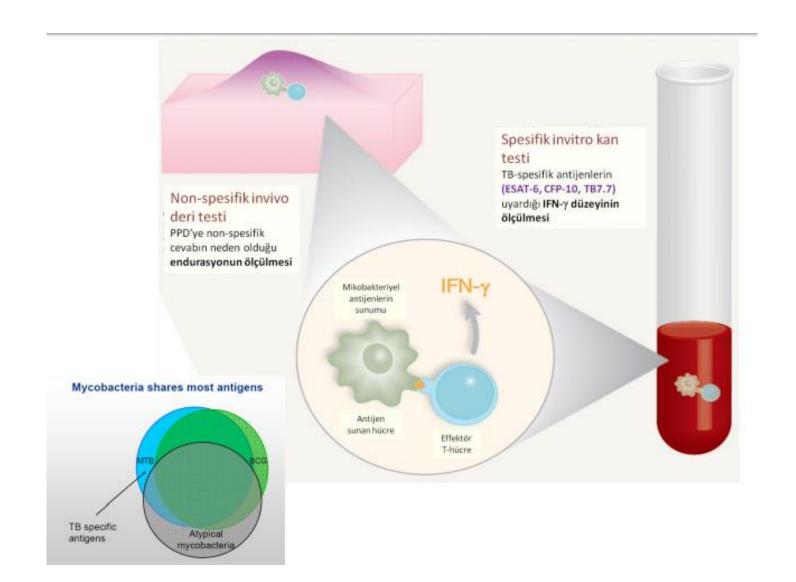
Kromojenik besiyerleri

Downloaded from http://cmr.asm.org/or


Archea kültürleri

ted in or cultured from the human gut (97, 98, 159, 170, 181, 183, 185). Current and Past Strategies for Bacterial Culture in Clinical Microbiology

Hücreiçi bakteri kültürleri-protozoolar


Hücreiçi bakteri kültürleri-hücre kültürleri

Current and Past Strategies for Bacterial Culture in Clinical Microbiology

TABLE 4 The most susceptible cells line used for the culture of intracellular bac Leader, Sophie Edouard, Isabelle Pagnier, Oleg Mediannikov, Michel Drancourt, Didier Raoult

	Cell line(s) (culture temp [\mathfrak{C}])						
Bacterium	Mammalian	Arthropod	Fish and amphibian				
C. burnetii	HEL, Vero (35)	Ixodes scapularis cell line-IDE8 (34)					
Spotted fever group Ricketts in	L929, Vero (32)	Dennacentor sp. cell lines DAE3 and DALBE3 (34); Exodes scapularis cell line ISE6 (34); Aedes albopictus cell linesAa23, AeAl2, C7/10, and C6/36 (22–32); An opheles gambiae cell line Sua5B (22–25)					
Typhus group Rickettsia	L929, Vero (35)	Aedes albopictus cell line Ae Al2 (28					
Rickeus ia felis	Vero (32)	Ixodes scapularis cell line ISE6 (32), Aedes albopicus cell lines Aa23 and C6/36 (22–25), An opheles gambiae cell line Sua5B (22–25)	XTC (28)				
Orientia tsutsugamushi	L929 (32)						
Anap las ma p hagocytophilum	HL60 (37)	Exodes scapularis cell lines ISE6 and IDE8 (34)					
Ehrlich ia chaffeen sis	DH82 (37)	Exodes scapularis cell line ISE6 (34)					
Ehrlich ia can is	DH82 (37)	Ixodes scapularis cell line ISE6/IDE8 (34) Ixodes ricinus cell line IRE/CTVM18 (34)					
Wolbachia pipientis	HEL (28 and 37)	Aedes albopictus cell lines Aa2 3 and C6/36 (26–28)					
Tropheryma whipplei	MRC5, HEL (35)	-					
Chlamydia trach omatis	McCoy, HeLa 229 (35)						
Chlamydia pneumoniae	HL, HEp-2 (35)						

IGRA testleri

Specific Interferon γ Detection for the Diagnosis of Previous Q Fever

Teske Schoffelen,¹ Leo A. B. Joosten,¹ Tineke Herremans,² Anton F. J. de Haan,³ Anne Ammerdorffer,¹ Hans C. Rümke,⁴ Clementine J. Wijkmans,⁵ Hendrik I. Jan Roest,⁸ Mihai G. Netea,¹ Jos W. M. van der Meer,¹ Tom Sprong,^{1,7,8,a} and Marcel van Deuren^{1,a}

¹Department of Medicine, Radboud University Nijmegen Medical Centre, and Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Nijmegen; ²National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthover; ³Department of Epidemiology, Biostatistics and HTA, Radboud University Nijmegen Medical Centre, Nijmegen; ⁴Vaxinostics BV, Rotterdam; ⁵Municipal Public Health Service Hart voor Brabant, 's-Hertogenbosch; ⁸Department of Bacteriology and TSEs, Central Veterinary Institute, part of Wageningen UR, Lelystad; and Departments of ³Internal Medicine and ⁶Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Natherlands

(See the Editorial Commentary by Graves on pages 1752–3.)

Background. Current practice for diagnosis of Q fever, caused by the intracellular pathogen *Coxiella burnetii*, relies mainly on serology and, in prevaccination assessment, on skin tests (STs), which both have drawbacks. In this study, C. burnetii–specific interferon γ (IFN- γ) production was used as a new diagnostic tool for previous Q fever, circumventing most of these drawbacks. Our aim was to compare this test to serology and ST.

Methods. One thousand five hundred twenty-five individuals from an endemic area with a risk for chronic Q fever were enrolled. IFN-γ production was measured after in vitro stimulation of whole blood with C. burnetii antigens. Various formats using different C. burnetii antigens were tested. Serology and ST were performed in all individuals.

Results. In all assay formats, C. burnetii-specific IFN- γ production was higher (P<.0001) in seropositive or ST-positive subjects than in seronegative and ST-negative subjects. Whole blood incubated for 24 hours with C. burnetii Nine Mile showed optimal performance. After excluding subjects with equivocal serology and/or borderline ST results, IFN- γ production was 449 ± 82 pg/mL in the positive individuals (n = 219) but only 21 ± 3 pg/mL in negative subjects (n = 908). Using Bayesian analysis, sensitivity and specificity (87.0% and 90.2%, respectively) were similar to the combination of serology and ST (83.0% and 95.6%, respectively). Agreement with the combination of serology and ST was moderate (84% concordance; $\kappa = 0.542$).

Conclusions. Specific IFN-γ detection is a novel diagnostic assay for previous *C. burnetii* infection and shows similar performance and practical advantages over serology and ST. Future studies to investigate the clinical value in practice are warranted.

Moleküler Biyoloji

PCR (isotermal-LAMP,helikaz- HDA)
 TMA

"Multiplex" PCR

Otomatize sistemler (sample to result)

"Microarray" teknolojileri

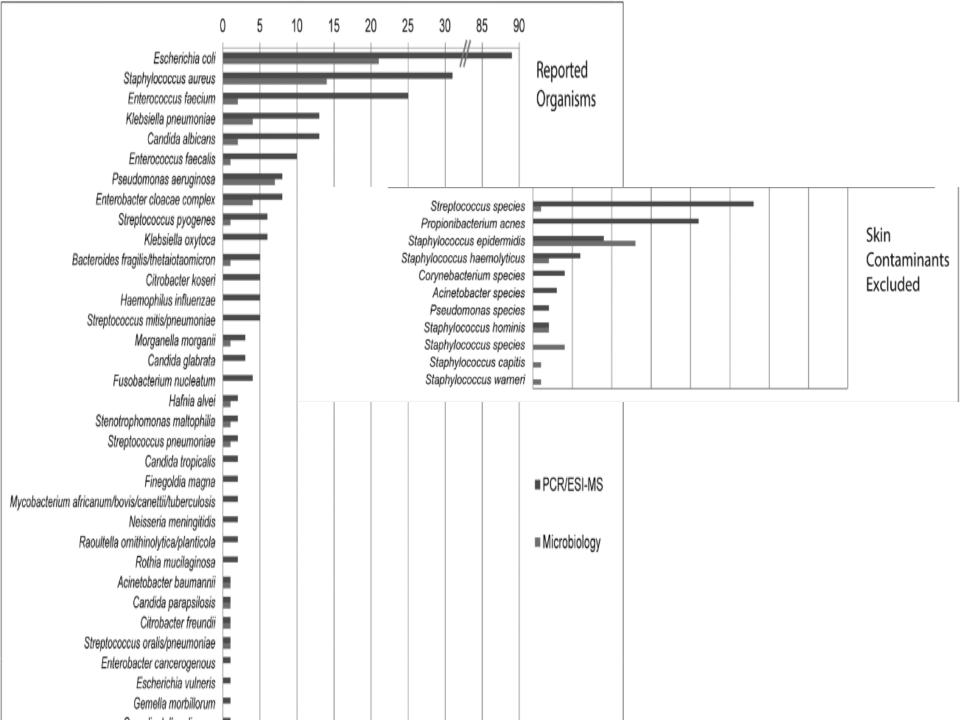
Sekans metodları *

PCR

- Bakteriyemi hızlı tanısı
- Pnömoni tanısı
- Genital sistem infeksiyonları tanısı (gonokok, C.trachomatis)
- Enterik patojenler
 (Salmonella, Shigella, Campylobacter, stx1/stx2)
- Clostridium difficile tanısı
- Spesifik patojen tanıları
 (S.aureus, S.pyogenes, Grup-B streptokok, M.tuberculosis)
- Direnç
 VRE, MRSA, Rif R M.tuberculosis

Rapid Diagnosis of Infection in the Critically III, a Multicenter Study of Molecular Detection in Bloodstream Infections, Pneumonia, and Sterile Site Infections*

Jean-Louis Vincent, MD, PhD, FCCM¹; David Brealey, MD²; Nicolas Libert, MD³; Nour Elhouda Abidi, MD⁴; Michael OʻDwyer, MD⁵; Kai Zacharowski, MD⁶; Malgorzata Mikaszewska-Sokolewicz, MD७; Jacques Schrenzel, MD®; François Simon, MD⁰; Mark Wilks, PhD⁵; Marcus Picard-Maureau, PhD¹⁰; Donald B. Chalfin, MD, MPH¹¹; David J. Ecker, PhD¹¹; Rangarajan Sampath, PhD¹¹; Mervyn Singer, MD²; the Rapid Diagnosis of Infections in the Critically Ill Team


Conclusions: Polymerase chain reaction/electrospray ionization-mass spectrometry provides rapid pathogen identification in critically ill patients. The ability to rule out infection within 6 hours has potential clinical and economic benefits. (*Crit Care Med* 2015; 43:2283–2291)

Rapid Diagnosis of Infection in the Critically III, a Multicenter Study of Molecular Detection in Bloodstream Infections, Pneumonia, and Sterile Site Infections*

Jean-Louis Vincent, MD, PhD, FCCM¹; David Brealey, MD²; Nicolas Libert, MD³; Nour Elhouda Abidi, MD⁴; Michael O'Dwyer, MD⁵; Kai Zacharowski, MD⁶; Malgorzata Mikaszewska-Sokolewicz, MD⁷; Jacques Schrenzel, MD⁸; François Simon, MD⁹; Mark Wilks, PhD⁵; Marcus Picard-Maureau, PhD¹⁰; Donald B. Chalfin, MD, MPH¹¹; David J. Ecker, PhD¹¹; Rangarajan Sampath, PhD¹¹; Mervyn Singer, MD²; the Rapid Diagnosis of Infections in the Critically Ill Team

TABLE 2. Bloodstream Infection Assay Performance

Culture							
	-	-	Total	Sensitivity	81% (95% CI, 70-89%)		
Polymerase chain reaction/	+ 5	5 173	228	Specificity	69% (95% CI, 65–73%)		
electrospray ionization-mass spectrometry	- 1	3 384	397	Positive predictive value	24% (95% CI, 19-30%)		
	Total 6	8 557	625	Negative predictive value	97% (95% CI, 94–98%)		

PCR ile tanımlama

Minerva Anestesiol, 2015 May 29. [Epub ahead of print]

Comparison of blood culture and multiplex real-time pcr for the diagnosis of nosocomial sepsis.

Dinç F¹, Akalın H, Özakın C, Sınırtaş M, Kebabçı N, İşçimen R, Kelebek Girqin N, Kahveci F.

Author information

Abstract

BACKGROUND: Causative microorganisms cannot be isolated in many cases of suspected sepsis. Multiplex real-time PCR generates results more rapidly than conventional blood culture systems.

METHODS: In this study, we evaluated the diagnostic performance of multiplex real-time PCR (LightCycler SeptiFast), and compared with blood cultures and cultures from focus of infection in nosocomial sepsis.

RESULTS: Seventy-eight nosocomial sepsis episodes in 67 adult patients were included in this study. The rates of microorganism detection by blood culture and PCR were 34.2% and 47.9%, respectively. Sixty-five microorganisms were detected by both methods from 78 sepsis episodes. Nineteen of these microorganisms were detected by both blood culture and PCR analysis from the same sepsis episode. There was statistically moderate concordance between the two methods (kappa=0.445, p<0.001). There was no significant agreement between the blood culture and PCR analysis in terms of microorganism detected (kappa=0.160, p=0.07). Comparison of the results of PCR and cultures from focus of infection revealed no significant agreement(kappa=0.110, p=0.176). However, comparison of the results of PCR and blood cultures plus cultures from focus of infection(positive blood culture and/or positive culture from focus of infection) showed poor agreement(kappa=0.17, p=0.026). When the blood culture was used as the gold standart, the sensitivity, specificity, positive and negative predictive value of PCR in patients with bacteremia was 80%, 69%, 57% and 87%, respectively.

CONCLUSIONS: The SeptiFast may be useful when added to blood culture in the diagnosis and management of sepsis.

Emerging Technologies for the Clinical Microbiology Laboratory

TABLE 2

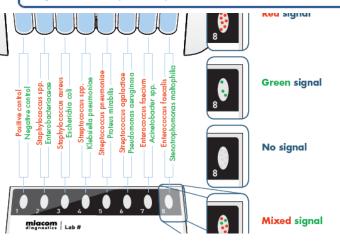
Comparison of FDA-cleared molecular methods for detection of microorganisms in positive blood culture broths

Test	Targets	Sensitivity (%)	Specificity (%)	Time to result (h)	Format and setup
Verigene BC-GP	12 Gram-positive genus or species targets and 3 resistance markers (<i>mecA, vanA, vanB</i>)	92-100	98-100	2.5	On-demand, microarray, automated sample processor, manual transfer of array to analyzer
Verigene BC-GN	8 Gram-negative genus or species targets and 6 resistance markers (KPC, NDM, CTX-M, VIM, IMP, OXA)	81-100	98-100	2	On-demand, microarray, automated sample processor, manual transfer of array to analyzer
FilmArray BCID	8 Gram-positive, 11 Gram-negative, and 5 yeast genus or species targets, 4 resistance markers (mecA, vanA/B, KPC, NDM)	88-100	94-100	1	On-demand, parallel miniaturized singleplex RT-PCR, full sample-to-result capability
GeneOHM StaphSR	S. aureus, MRSA	50-100	98-99	2	Batch, RT-PCR, offline manual sample lysis, extraction, and RT-PCR setup
Xpert MRSA/SA Blood Culture	S. aureus, MRSA	69-100	98-100	1	On-demand, RT-PCR, full sample- to-result capability
Septifast ^a	6 Gram-positive, 8 Gram-negative, and 5 yeast targets and <i>A. fumigatus</i>	42-79	67-97	6	Batch, 1.5-10 ml whole blood; offline extraction and setup of 3 parallel RT-PCRs

→ Not cleared by FDA for clinical use. Data are from direct analysis of whole blood.

Beacon-based (bbFISH®) technology for rapid pathogens identification in blood cultures

Christina Sakarikou², Martina Parisato³, Giuliana Lo Cascio^{3†} and Carla Fontana^{1,2*†}


Abstract

Background: Diagnosis and treatment of bloodstream infections (BSI) are often hampered by the delay in obtaining the final results of blood cultures. Rapid identification of pathogens involved in BSI is of great importance in order to improve survival of septic patients. Beacon-based fluorescent in situ hybridization (hemoFISH® Gram positive and hemoFISH® Gram negative test kits, miacom diagnostics GmbH Düsseldorf, Germany) accelerates the identification of most frequent bacterial pathogens of sepsis.

Results: In this study a total of 558 blood culture (377 blood culture positive and 181 negative) were tested with the hemoFISH® method and the results were evaluated in comparison with the traditional culture based methods. The overall sensitivity and specificity of the hemoFISH® tests were 94.16% and 100%, while, the PPV and NPV were 100 and 89.16%, respectively. As the hemoFISH® results were obtained within 45 mins, the time difference between the final results of the traditional culture method and the hemoFISH® assay was about two days.

Conclusions: Considering the good sensitivity and specificity of the hemoFISH® assays as well as the significant time saving in obtaining the final results (p-value 0.0001), the introduction of the system could be rialable in the microbiology laboratories, even alongside the traditional systems.

Keywords: Sepsis, Rapid test, Beacon-based FISH, hemoFISH

Sakarikou et al. BMC Microbiology 2014, 14:99 http://www.biomedcentral.com/1471-2180/14/99

Targeting antimicrobial-resistant bacterial respiratory tract pathogens: it is time to 'get smart'

Boeun Lee and Helen W. Boucher

KEY POINTS

- Guidelines recommend increased efforts to encourage pathogen-directed therapy to control pneumonia caused by antibiotic-resistant bacteria.
- Rapid molecular assays have shown promise to expedite pathogen-directed therapy; however, the clinical impact and cost effectiveness of these 'point-ofcare' molecular assays require further study.
- Increased efforts to improve antibiotic usage with the optimal drug, at the right time, with the best dose for the most effective duration, are needed to tackle antimicrobial resistance.
- New antibiotics to treat carbapenem-resistant GNB are desperately needed, and no convincing evidence exists to support combination therapy.
- Aerosolized therapy may provide additive benefits to parenteral therapy by delivering high local concentrations with low systemic absorption and less toxicity.

Targeting antimicrobial-resistant bacterial respiratory tract pathogens: it is time to 'get smart'

Table 1 Days

Boeun Lee and Helen W. Boucher

Details/microbiology	Turnaround time	Sensitivity/specificity
Nested RT-PCR followed by multiplex PCR	1 h	84-100%/89-100%
20 respiratory pathogens including 17 viruses, B. pertussis, M. pneumonia and C. pneumoniae		
Multiplex PCR	5.2 h	80.6%/96%
Can directly use all native samples irrespective of collection methods		
Detects 17 bacterial and fungal (PCP) pathogens as well as 22 antibiotic resistance markers		
Multiplex PCR	4 h	86% (20-100%)/98.8% (97-100%)
Allows analysis of up to 25 targets in a single reaction 18 viral +4 bacterial RTI		
Real time PCR	1.5-2.5 h	No data
Detect 40 pathogens including 8 respiratory viruses, C. pneumoniae, L. pneumophilia, and M. pneumoniae		
Multiplex PCR	Within 3–6 h	No data
7 bacterial pathogens		
Mass spectrometry	1–1.5 days faster than routine cultures	Under investigation; sensitivity > 95% (lower in respiratory specimens?)
	Nested RT-PCR followed by multiplex PCR 20 respiratory pathogens including 17 viruses, B. pertussis, M. pneumonia and C. pneumoniae Multiplex PCR Can directly use all native samples irrespective of collection methods Detects 17 bacterial and fungal (PCP) pathogens as well as 22 antibiotic resistance markers Multiplex PCR Allows analysis of up to 25 targets in a single reaction 18 viral +4 bacterial RTI Real time PCR Detect 40 pathogens including 8 respiratory viruses, C. pneumoniae, L. pneumophilia, and M. pneumoniae Multiplex PCR Detects 15 viral pathogens and 7 bacterial pathogens	Nested RT-PCR followed by multiplex PCR 20 respiratory pathogens including 17 viruses, B. pertussis, M. pneumonia and C. pneumoniae Multiplex PCR 5.2 h Can directly use all native samples irrespective of collection methods Detects 17 bacterial and fungal (PCP) pathogens as well as 22 antibiotic resistance markers Multiplex PCR Allows analysis of up to 25 targets in a single reaction 18 viral + 4 bacterial RTI Real time PCR Detect 40 pathogens including 8 respiratory viruses, C. pneumoniae, L. pneumophilia, and M. pneumoniae Multiplex PCR Within 3-6 h Detects 15 viral pathogens Mass spectrometry 1-1.5 days faster than routine

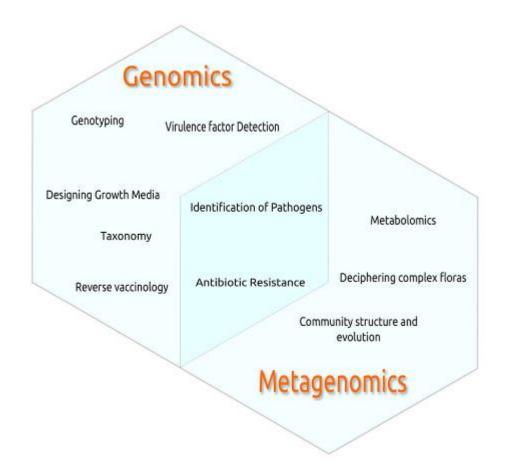
Comparison of next-generation sequencing methods^{[59] [50]}

		Comparison	of next-generation	ı sequencing	methods ^{[59][6}	oj	
Method	Read length	Accuracy (single read not consensus)	Reads per run	Time per run	Cost per 1 million bases (in US\$)	Advantages	Disadvantages
Single-molecule real-time sequencing (Pacific Biosciences)	10,000 bp to 15,000 bp avg (14,000 bp N50); maximum read length >40,000 bases ^[61] [62][63]	87% single-read accuracy ^[54]	50,000 per SMRT cell, or 500–1000 megabases ^{[65][66]}	30 minutes to 4 hours ^[67]	\$0.13—\$0.60	Longest read length. Fast. Detects 4mC, 5mC, 6mA. ^[68]	Moderate throughput. Equipment can be very expensive.
lon semiconductor (lon Torrent sequencing)	up to 400 bp	98%	up to 80 million	2 hours	\$1	Less expensive equipment. Fast.	Homopolymer errors.
Pyrosequencing (454)	700 bp	99.9%	1 million	24 hours	\$10	Long read size. Fast.	Runs are expensive. Homopolymer errors.
Sequencing by synthesis (Illumina)	50 to 300 bp	99.9% (Phred30)	up to 6 billion (TruSeq paired-end)	1 to 11 days, depending upon sequencer and specified read length[59]	\$0.05 to \$0.15	Potential for high sequence yield, depending upon sequencer model and desired application.	Equipment can be very expensive. Requires high concentrations of DNA.
Sequencing by ligation (SOLiD sequencing)	50+35 or 50+50 bp	99.9%	1.2 to 1.4 billion	1 to 2 weeks	\$0.13	Low cost per base.	Slower than other methods. Has issues sequencing palindromic sequences. [70]
Chain termination (Sanger sequencing)	400 to 900 bp	99.9%	N/A	20 minutes to 3 hours	\$2400	Long individual reads. Useful for many applications.	More expensive and impractical fo larger sequencing projects. This method also requires the time consuming step of plasmid cloning of PCR.

Genome-Wide Sequencing of Cellular microRNAs Identifies a Combinatorial Expression Signature Diagnostic of Sepsis

Yuqian Ma^{1,3¤}, David Vilanova⁴, Kerem Atalar^{1,3}, Olivier Delfour⁴, Jonathan Edgeworth^{3,5}, Marlies Ostermann^{3,5}, Maria Hernandez-Fuentes^{1,3}, Sandrine Razafimahatratra⁴, Bernard Michot⁴, David H. Persing⁶, Ingrid Ziegler⁷, Bianca Törös⁸, Paula Mölling⁸, Per Olcén⁸, Richard Beale^{2,3,5}, Graham M. Lord^{1,3,5}*

Abstract


Rationale: Sepsis is a common cause of death in the intensive care unit with mortality up to 70% when accompanied by multiple organ dysfunction. Rapid diagnosis and the institution of appropriate antibiotic therapy and pressor support are therefore critical for survival. MicroRNAs are small non-coding RNAs that play an important role in the regulation of numerous cellular processes, including inflammation and immunity.

Objectives: We hypothesized changes in expression of microRNAs during sepsis may be of diagnostic value in the intensive care unit (ICU).

Methods: Massively parallel sequencing of microRNAs was utilised for screening microRNA candidates. Putative microRNAs were validated using quantitative real-time PCR (qRT-PCR). This study includes data from both a training cohort (UK) and an independent validation cohort (Sweden). A linear discriminant statistical model was employed to construct a diagnostic microRNA signature.

Condusions: Taken together, these data provide a novel microRNA signature of sepsis that should allow rapid point-of-care diagnostic assessment of patients on ICU and also provide greater insight into the pathobiology of this severe disease.

Sekans teknolojisindeki gelişmelerin yansımaları

2013) 415-424

Contents lists available at ScienceDirect

Journal of Microbiological Methods

journal homepage: www.elsevier.com/locate/jmicmeth

Genomics and metagenomics in medical microbiology

HOME

ARTICLES & MULTIMEDIA *

ISSUES *

SPECIALTIES & TOPICS *

FOR AUTHORS *

(CME »

ORIGINAL ARTICLE

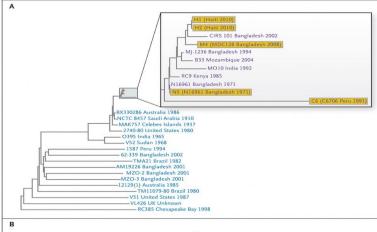
The Origin of the Haitian Cholera Outbreak Strain

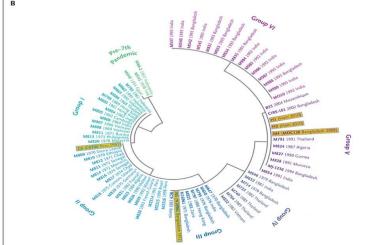
Chen-Shan Chin, Ph.D., Jon Sorenson, Ph.D., Jason B. Harris, M.D., William P. Robins, Ph.D., Richelle C. Charles, M.D., Roger R. Jean-Charles, M.D., James Bullard, Ph.D., Dale R. Webster, Ph.D., Andrew Kasa<u>rskis, Ph.D., Paul Peluso, Ph.D., Ellen E.</u>

Paxinos, Ph.D., Yoshiharu Yamaichi, Ph.D., Stephen B. Calderwood, M.D., John Matthew K. Waldor, M.D., Ph.D.

N Engl J Med 2011; 364:33-42 | January 6, 2011 | DOI: 10.1056/NEJMoa1012928

METHODS


We used third-generation single-molecule real-time DNA sequencing


to determine the genome sequences of 2 clinical *Vibrio cholerae* isolates from the current outbreak in Haiti, 1 strain that caused cholera in Latin America in 1991, and 2 strains isolated in South Asia in 2002 and 2008. Using primary sequence data, we compared the genomes of these 5 strains and a set of previously obtained partial genomic sequences of 23 diverse strains of *V. cholerae* to assess the likely origin of the cholera outbreak in Haiti.

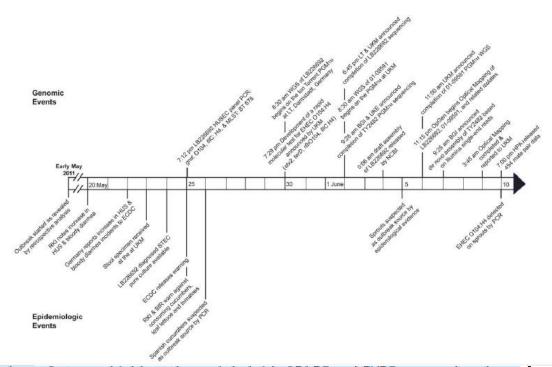
Full Text of Methods...

RESULTS

Both single prolective variations and the presence and structure of hypervariable chromosomal elements indicate that there is a close relationship between the Haitian isolates and variant *V. cholerae* Enter O1 strains isolated in Bangladesh in 2002 and 2008. In contrast, analysis of genomic variation of the Haitian isolates reveals a more distant relationship with circulating South American isolates.

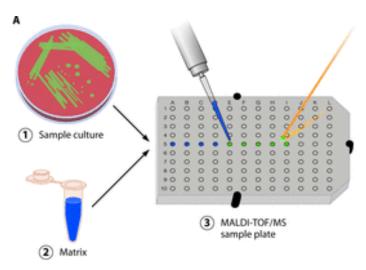
Prospective Genomic Characterization of the German Enterohemorrhagic *Escherichia coli* O104:H4 Outbreak by Rapid Next Generation Sequencing Technology

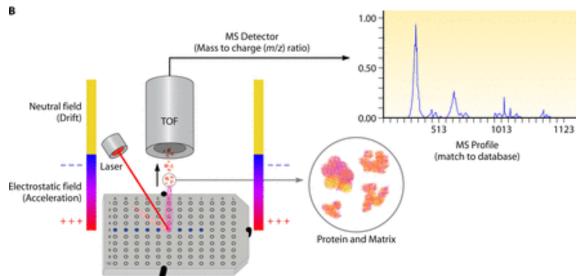
Alexander Mellmann¹⁰, Dag Harmsen^{2x3}, Craig A. Cummings³⁰, Emily B. Zentz⁴, Shana R. Leopold¹,


Alain Rico⁵, Karola Prior², Rafael Szczcnan austri² Vanamai Li³ Wantan Zhana¹ Charles Genomic Characterization of the 0104 H4 Outb

John K. Henkhaus⁴, Benjamin Leopold Moore⁴, Simone Guenther⁵, Jonathan

1 Institute of Hygiene, University Münster, Münster, Germany California, United States of America, 4 OpGen, Gaithersburg Wemigerode Branch, Wemigerode, Germany, 7 Ion Torrent I


Abstract


An ongoing outbreak of exceptionally virul has caused over 830 cases of hemolytic unhas not been detected in animals, has rare characteristics of this strain in the early: Technologies Ion Torrent PGMTM sequence historic O 104:H4 HUS isolate from 2001 (01-the newly introduced PGMTM within 62 hou pathogenic E. coli, enteroaggregative E. co core E. coli genes indicate that the HUS-cau 55989 show a close relationship but are coutbreak strain differs from the 2001 strain 55989 and EHEC O104:H4 strains evolved from

loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.

MALDI-TOF

Sınırlılıkları

- Çok sayıda bakteri gerekli
- Karışık koloni varlığında sonuç veremiyor,
- Shigella E.coli ayırt edemiyor,
- Salmonella türlerini tanımlayamıyor, (Salmonella spp.)
- S.pneumoniae ile S. mitis/oralis gibi yakın türleri ayırt etmekte güçlük çekiyor.

Beklentiler

- Direkt örnekten tanımlama
- Antibiyotik direncini saptama
- Mikobakteri tiplendirme
- Klonalite çalışmaları
- MS ile protein dışı yapıların saptanması...

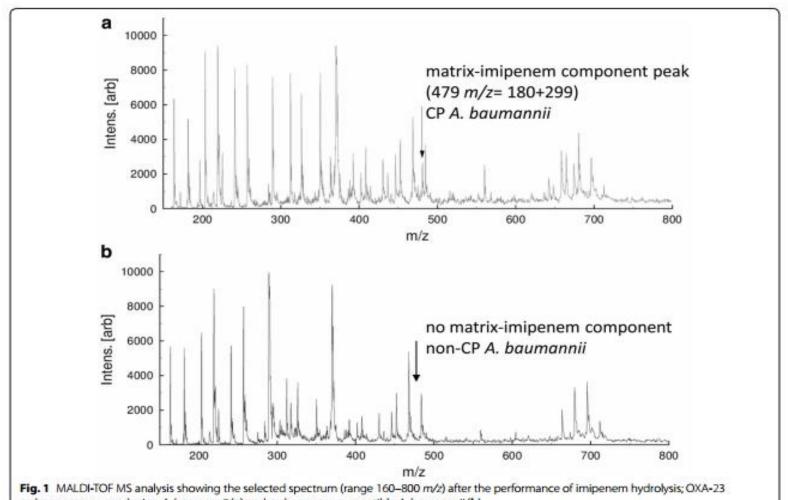
ARTICLE

Rapid urine preparation prior to identification of uropathogens by MALDI-TOF MS

```
L. Veron<sup>1</sup> · S. Mailler<sup>2</sup> · V. Girard<sup>2</sup> · B. H. Muller<sup>1</sup> · G. L'Hostis<sup>1</sup> · C. Ducruix<sup>1</sup> · A. Lesenne<sup>3</sup> · A. Richez<sup>4</sup> · H. Rostaing<sup>1</sup> · V. Lanet<sup>1</sup> · S. Ghirardi<sup>2</sup> · A. van Belkum<sup>2</sup> · F. Mallard<sup>1</sup>
```

Received: 11 May 2015 / Accepted: 13 May 2015 / Published online: 9 J © Springer-Verlag Berlin Heidelberg 2015

Abstract Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS) has been introduced in clinical routine microbiology laboratories. For the rapid diagnosis of urinary tract infections, culture-independent methods prior MALDI-mediated identification have been described. Here, we describe a comparison of three of these methods based on their performance of bacterial identification and their potential as a routine tool for microbiology labs: (i) differential centrifugation, (ii) urine filtration and (iii) a 5-h bacterial cultivation on solid culture media. For 19 urine


Conclusions

The results shown in the present study demonstrate that short culture is a very simple and efficient sample preparation method allowing the fast and reliable identification of uropathogens by MALDI. This approach appears to be most convenient since it is compatible with high throughput, it provides "same day" identification and it would result in earlier and better antibiotic selection. If faster results are required, we have shown that dual-filtration is a more user-friendly surrogate than the differential centrifugation protocol. The additional cost of this solution would be justified by the higher medical value of fast results.

most prevalent causative species. In the setting of a possible

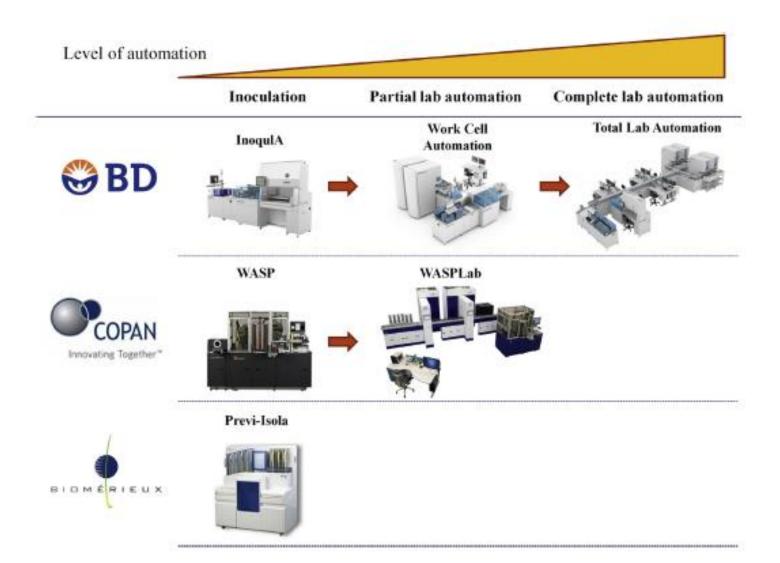
MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials

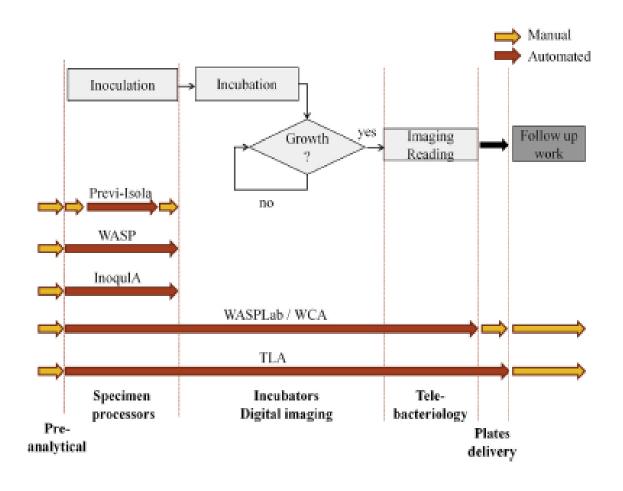
carbapenemase-producing A. baumannii (a) and carbapenem-susceptible A. baumannii (b)

RESEARCH ARTICLE

Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass-Spectrometry (MALDI-TOF MS) Based Typing of Extended-Spectrum β-Lactamase Producing *E. coli* – A Novel Tool for Real-Time Outbreak Investigation

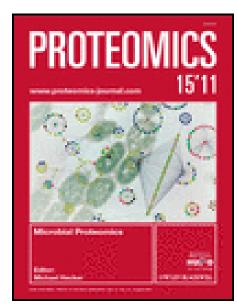
Adrian Egli^{1,2}*, Sarah Tschudin-Sutter³, Michael Oberle⁴, Daniel Goldenberger¹, Reno Frei¹, Andreas F. Widmer³




^{*} a.egli@usb.ch

2014

Otomatize Laboratuvarlar



Omikler

- Genomik
- Proteomik (MS)
- Metabolomik

lipidomik

• • • • •

ORIGINAL ARTICLE

Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study

Stephen J Fowler, 1,2 Maria Basanta-Sanchez, 1 Yun Xu, 3 Royston Goodacre, 3

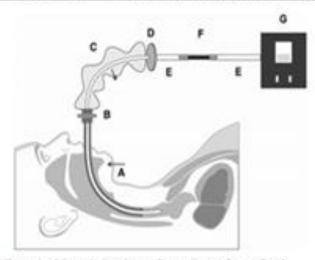
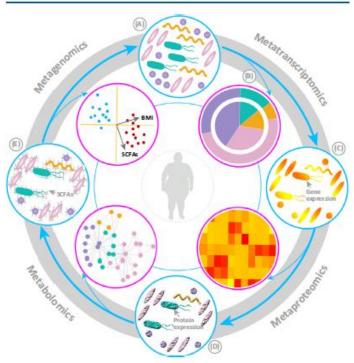


Figure 1 Schematic: breath sampling equipment for ventilated systems. Intratracheal air is sampled at 1 L/min (regulated by an air-sampling pump (GI) onto an adsorbent trap (F) via oxygen tubing (E), a bacterial/hydrophobic filter (D), and a suction catheter (C) placed in the endotracheal tube (A) via the standard access port (B).

Bakteriyolojide Yeni Yönelimler

Trends in Endocrinology & Metabolism

Special Issue: Systems Approach to Metabolic Disease


Review

Linking Microbiota to Human Diseases: A Systems Biology Perspective

Hao Wu,1,‡ Valentina Tremaroli,1,‡ and Fredrik Bäckhed1,2,*

Integration of 'Omics' Techniques

Bakteriyolojide Yeni Fikirler

- Günümüzde İnfeksiyon Hastalıkları uzmanları mikropları öldüren değil onları anlayan, yöneten uzmanlar olmalıdır:
- "Mikropların Efendisi"

Herşeyin nedeni mikroplar!!!

(ileriki yıllarda tüm hastalar İnfeksiyonculara gelecek!)

Yakın dönem sorunları

- Maliyet?
- Kafa karışıklığı !

HKüç bakteri PCR (+)

Solunum örneği....Multipleks PCR... üç etken (+)

 Tüm infeksiyon kültürümüz "kültür" temelli peki şimdi ne olacak!

Klinik Mikrobiyolojinin sonu

JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 2002, p. 3889–3893 0095-1137/02/\$04.00+0 DOI: 10.1128/JCM.40.11.3889–3893.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved.

Vol. 40, No. 11

GUEST COMMENTARY

Clinical Microbiology in the Year 2025

W. Michael Dunne, Jr., 1* J. Keith Pinckard, and Lora V. Hooper²

Departments of Pathology and Immunology¹ and Molecular Biology and Pharmacology,²
Washington University School of Medicine, St. Louis, Missouri 63110

EPILOGUE

Our take on the future provides a happy ending for the profession of clinical microbiology. Perhaps these predictions will come true such that the advanced diagnostic technology will continually rely on the basic principles and practice of culture and identification, as we know it today. Perhaps this is too shortsighted and technological development will advance at a far greater pace than predicted. Ours is not the only profession that is wrestling with the prospect of extinction. Surgical pathologists will insist that a skilled individual and a microscope can never be replaced by a microarray for the diagnosis of all disease states. Certainly, the diagnosis of a large number of infectious diseases (and diseases in general) will be made using molecular technology in the year 2025, but we contend that the proportion of microorganisms amenable

Klinik Mikrobiyoloji Laboratuvarı

Uygun Örnek ne olabilir, hangi testleri istemelisiniz. Laboratuvarla iletişim...

Laboratuvar çalışmaları

Üreme etken/kolonizasyon...YORUM Boyalı preparatlarla ufuk açıcı yaklaşım... Sonucun kullanımının takibi Kontrol önlemleri

Sonuç

 Teknolojik gelişmeler yakın gelecekte tanı ve tedavi gelişmeleri dışında ciddi algı değişimleri yaratacaktır.

• İHKMU bu değişime hazırlıklı olmalıdır.

Hazırmıyız?

Teşekkür ederim ...

