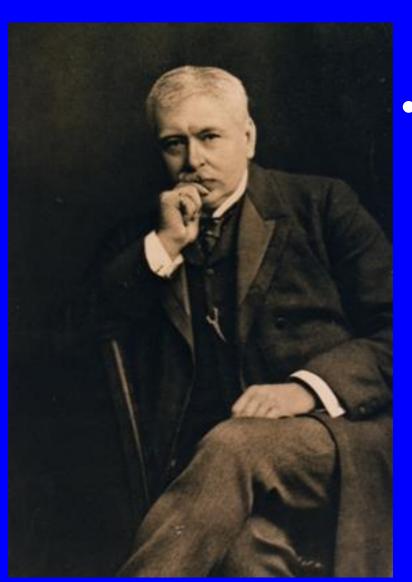
Tropikal Hastaliklar: Kusbakisi

Tropical Infections: A Bird's Eye View

Dr. George M. Varghese MD, DNB, DTMH, FIDSA
Department of Infectious Diseases
Christian Medical College, Vellore, India

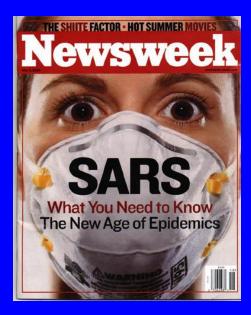
Outline


- Origin of Tropical Medicine & current relevance
- Exotic tropical infections: a starter
- Recent achievements and challenges in TB
- Solving the mystery fever

British Empire: 1900

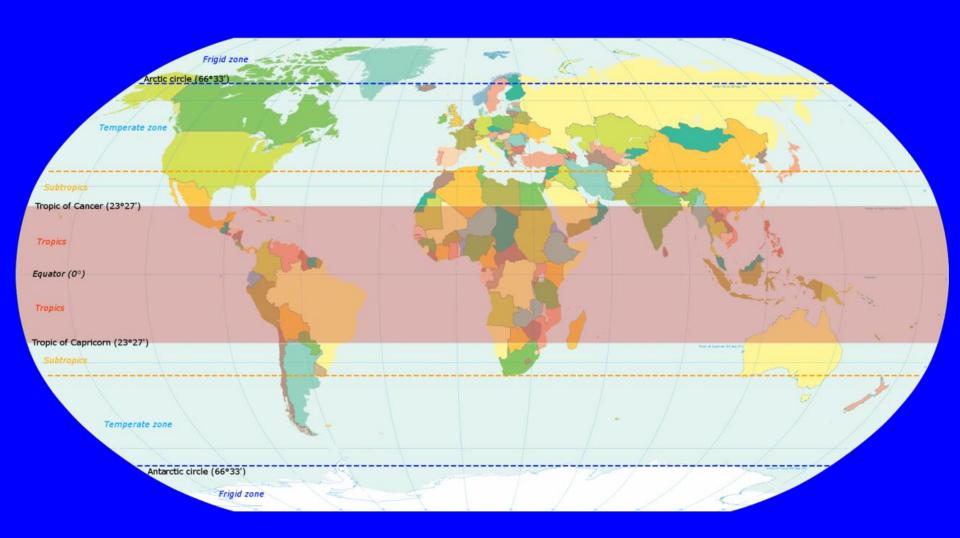
- **British Empire 531 million**
- Qing Empire (China) 432 million
- Russian Empire 176 million
- Mughal Empire (India) 175 million
- Ming Empire (China) 160 million
- Ottoman Empire (Turkey) 35 milli
- Germ Theory & elimination of Climatic model
- Political and economic approach to empire
- Challenges of colonialism 'White man's grave'
- Scientific Medicine Tropical Medicine

Sir Patrick Manson: Father of Tropical Medicine



- 'The role of the Society is to do justice to the tropical patients and to tropical diseases and hygiene'
 - Sir Patrick Manson.Presidential address to Society of Tropical Medicine 1907

Challenges of Globalisation



HIV Origin

- Unusual opportunistic infections noted in 1981
- Mutated virus from Central African monkey retrovirus
- Retrospective pathology search identified oldest known AIDS patient 1957
- SIV presumably transferred to humans during the late 19th or early 20th century
- Global travel

Tropical & Subtropical Regions

Common Tropical Infections

- Tuberculosis
- Malaria
- Dengue infection
- Rickettsioses:
 - Scrub typhus
 - Murine typhus
- Enteric fever
 - Typhoid fever
 - Paratyphoid fever

- Leptospirosis
- Melioidosis
- Anthrax
- Helminthic infections
- Leishmaniasis
- Infective diarrhea
- Tick borne viral diseases

An Interesting Case

- 49 year old man, a farmer
- No known co-morbid illnesses
- 3 days history of
 - -Fever
 - Headache severe
 - Dry cough
- Day of admission: 2 episodes of generalized seizures and altered sensorium

Physical examination

- Unconscious; GCS 8/15
- Tem-101^oF, HR-110/min; BP-120/70mmHg; RR:30/min
- No pallor / clubbing / cyanosis
- CVS:Normal
- RS: Clear
- P/A: Soft; no hepato-splenomegaly
- CNS:
 - GCS 8/15
 - Signs of meningeal irritation +
 - Pupils- equal and reacting to light
 - No focal deficits noted
 - Bilateral extensor plantars

Investigations

WBC	9500 /cumm
	(N 84, L7 M9)
Hb	14.7 gm/dl
PLT	90,000/cumm
Na	135 mmol/l
K	3.5 mmol/l
Cr	1.0 mg/dl

T. bilirub	0.7 mg/dl
D. bili	0.5 mg/dl
T. prot	6.9 g%
Alb	3.6 g%
SGOT	70U/L
SGPT	25 U/L
Alk. phos	93U/L

HIV ELISA - Negative

Chest X-ray

Investigations Contd.

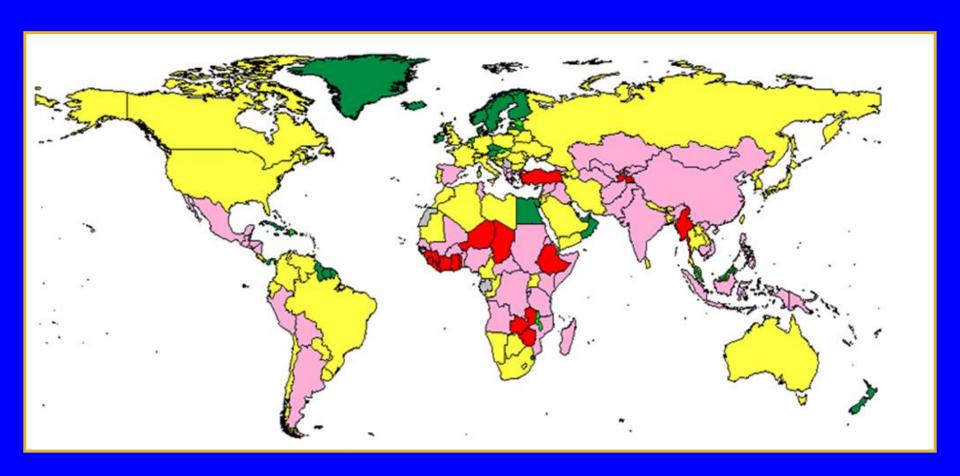
CSF analysis:


• WBC - 5000 cells (P80,L20); RBCs-4800 cumm Protein- 636 mg/dl;

Sugar – 89 mg/dl

RBS: 120 mg/dl

CSF & Blood Culture: Bacillus anthracis

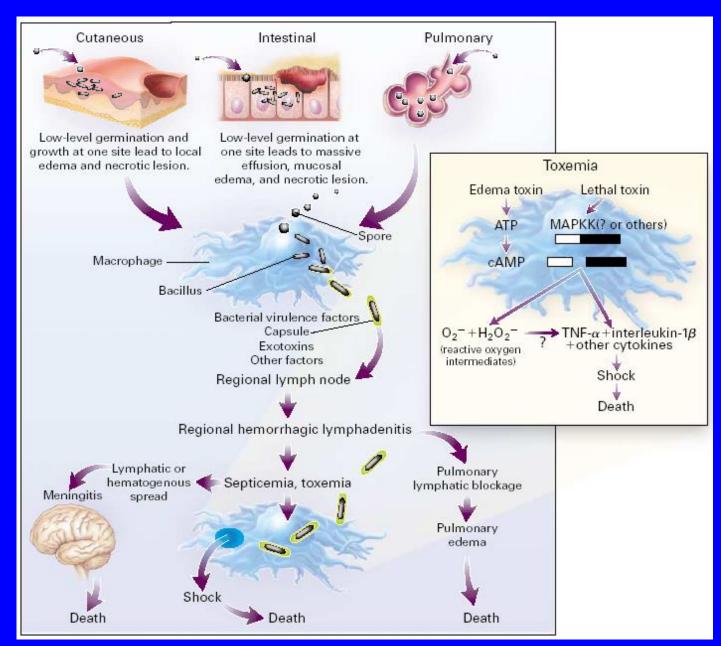

Human Transmission

- Cutaneous
 - Contact with infected tissues, wool, hide, soil
- Inhalational
 - Tanning hides, processing wool or handling carcases
- Gastrointestinal
 - Undercooked meat

The Organism

- Bacillus anthracis
- Large, gram-positive, non-motile bacilli
- Two forms
 - Vegetative
 - Spore
- Over 1,200 strains
- Nearly worldwide distribution

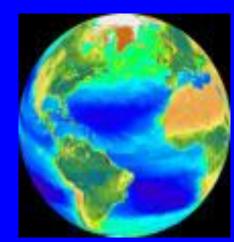
Anthrax Epidemiology



Inhalational Anthrax

- Incubation: 1 to 7 days
- Initial phase
 - Nonspecific (mild fever, malaise)
- Second phase
 - Severe respiratory distress
 - Dyspnoea, stridor, cyanosis, mediastinal widening, death in 24 to 36 hours
- Case fatality: 75 to 90%

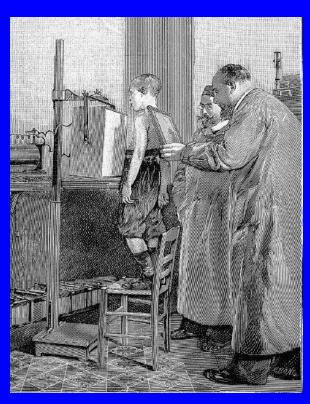
How does this kill the individual?


M. Mourez et al. Trends Microbiol. 10:287-293 (2002)

Treatment for Systemic Anthrax with Meningitis

Preferred	Alternatives	
1. A Bactericidal Agent (Fluoroquinolone)		
Ciprofloxacin 400 mg every 8H	Levofloxacin, Moxifloxacin	
2. A Bactericidal Agent (β-lactam)		
Meropenem 2 g every 8H	Imipenem Penicillin	
3. A Protein Synthesis Inhibitor		
Linezolid 600 mg every 12H	Clindamycin	

Tuberculosis – A Global Emergency


- 2 billion people are infected with *M. tb*
- 1.7 million people die/year
- Nearly half a million cases of Multi-Drug Resistant-TB/ year

TB Diagnosis

Microscopy 1882 Culture 1882

Chest X-ray 1896

Mycobacterial Culture

Manual:

Solid egg based: L.J

Agar based Middlebrook 7H10 / 11

Liquid based: Middlebrook 7H9

Automated:

BACTEC 460 TB (CO2 production)

MGIT 960 (O2 utilisation)

MB Bact (CO2 production)

GeneXpert® MTB/RIF Test

Workflow

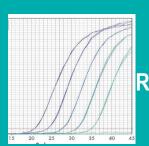
- sputum
- simple 1-step external sample prep, procedure
- time-to-result < 2 h
- throughput:
 <u>> 16 tests / day / module</u>
- no need for biosafety cabinet
- integrated controls
- true random access

Performance

- specific for MTB.
- sensitivity better than smear, similar to culture
- detection of rif-resistance via rpoB gene

Product and system design

- test cartridges for GeneXpert System
- several GeneXpert modules can be combined in 1 workstation
- swap replacement of detection unit
- ~1 day technician training for non-mycobacteriologists



Xpert MTB/ RIF: Integration of technologies

Real Time PCR

Microfluidics

HATCT CLIGHT TO SECTT COO

TB DNA sequence

- Molecular beacons
- RT PCR
- Resistance associated mutations
- Fluorimetric probes
- Microfluidics
- Sonic bacterial lysis

Table 3. Sensitivity and Specificity of the MTB/RIF Test for the Detection of Rifampin and Multidrug Resistance, as Compared with Phenotypic Drug-Susceptibility Testing Alone and in Combination with Sequencing of Discrepant Cases, According to Site.*

Lima, Peru — no./total no. (%)

Baku, Azerbaijan — no./total no. (%)

Mumbai, India — no./total no. (%)

Correct — no./total no. (%)

Correct — no. /total no. (%)

Total for rifampin resistance

Total for multidrug resistance

95% CI -- %

95% CI -- %

Cape Town, South Africa — no./total no. (%)

Durban, South Africa — no./total no. (%)

with i heliotypic brug-ousecpholiny	1 County
Site and Total	

Phenotypic Drug-Susceptibility Testing?	
Sensitivity for	Specificity for

Rifampin Resistance

16/16 (100.0)

47/49 (95.9)

15/16 (93.8)

3/3 (100.0)

119/121 (98.3)

200/205 (97.6)

94.4 - 99.0

195/200 (97.5)

94.3-98.9

Rifampin Resistance

190/193 (98.4)

90/94 (95.7)

126/126 (100.0)

38/38 (100.0)

61/64 (95.3)

505/515 (98.1)

96.5-98.9

Phenotypic Drug-Susceptibility Testing

and Discrepant Resolution by Sequencing?

Specificity for

Rifampin Resistance

190/190 (100.0)

90/90 (100.0)

126/126 (100.0)

38/38 (100.0)

62/62 (100.0)

506/506 (100.0)

99.2-100.0

Sensitivity for

Rifampin Resistance

19/19 (100.0)

51/52 (98.1)

15/15 (100.0)

3/3 (100.0)

121/122 (99.2)

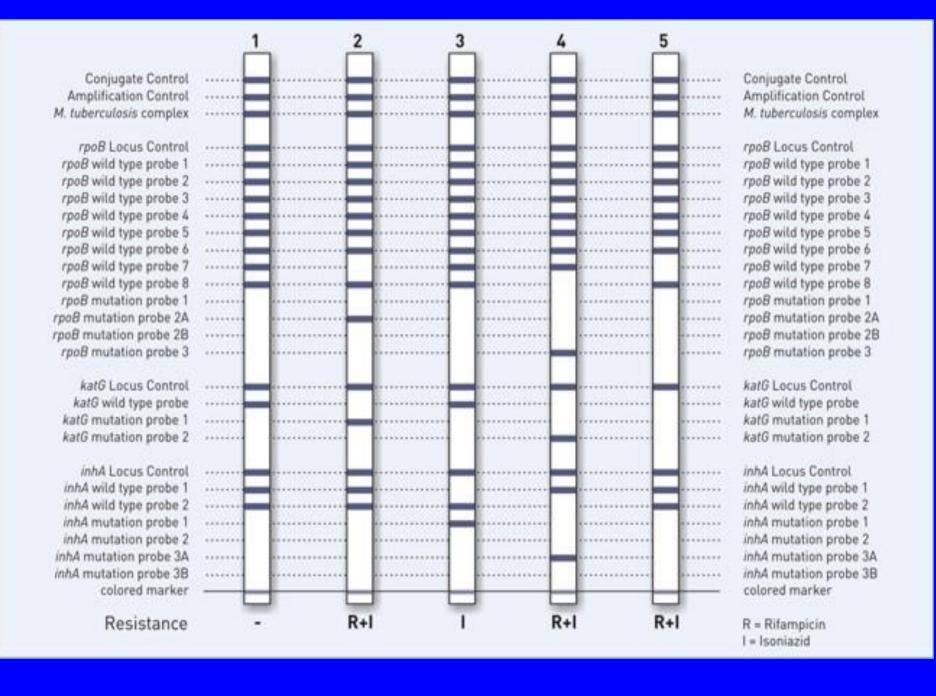
209/211 (99.1)

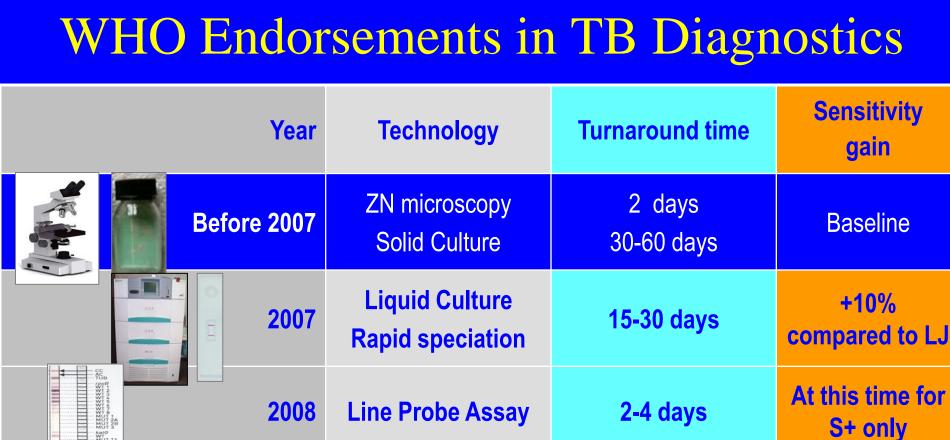
96.6-99.7

197/199 (99.0)

96.4 - 99.7

Genotypic tests: Hain Line Probe Assay (LPA)


1) DNA **Extraction**


by PCR

Specimen Free DNA DNA*STRIP* with specific probes **DNA** Isolation 2) DNA Amplification **Amplification**

3) Hybridization

4) Evaluation DNA*STRIP* with ensuing color

LED-based FM

Integrated NAAT

(TB, Rif)

+ 10%

compared to

ZN

+ 40%

compared to

ZN

1-2 days

90 minutes

Line Probe Assay 2008 **2-4 days**

2009

2010

Hand held Portable devices in development

TrueLab NAAT by Molbio Diagnostics Private Ltd., India

Genedrive technology by Epistem Ltd, Manchester , UK

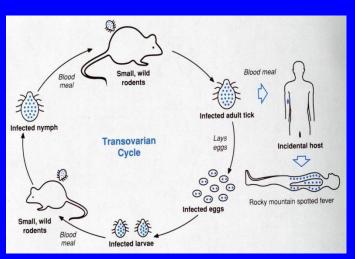
Unusual Acute Febrile Illness in 90s

• Acute febrile illness with multiple organ involvement

WBC	7100
Hb	15.4
PLT	30000
SGOT	164
SGPT	216
Alk. ph	156

CSF: WBC – 65; (P 2, L 98)

Protein – 103; Glucose – 56



Scrub Typhus

- A mite-borne, zoontoic bacterial infection
- Causative agent: *Orientia tsutsugamushi* (*Rickettsia tsutsugamushi*)
- Three major serotypes Kato, Karp & Gilliam
- Manifests as fever and multiorgan involvement.
- Vector: chiggers (larva of trombiculid mite Leptotrombidium)
- Reservoir: chiggers & rats
 - Normal cycle: rat to mite to rat
 - Transovarian transmission
- Humans incidentally infected

When should scrub typhus be suspected?

- Undifferentiated febrile illness with:
 - Pathognomonic eschar
 - Evidence of multisystem involvement, especially with:
 - Transaminase elevation
 - Thrombocytopenia
 - Leukocytosis

Organ Involvement & Complications

- ARDS 44%
- Respiratory involvement (breathlessness / pneumonitis) in >60%
- Hepatic involvement >80%
- Refractory shock 25%
- Aseptic meningitis or meningoencephalitis—19%
- Renal dysfunction 13%
- MODS 38%

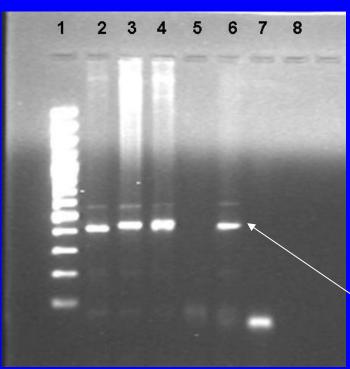
www.nature.com/jhg

ORIGINAL ARTICLE

Single-nucleotide polymorphisms in Toll-like receptor (TLR)-2, TLR4 and heat shock protein 70 genes and susceptibility to scrub typhus

Jeshina Janardhanan¹, Sherry Joseph Martin¹, Elisabeth Astrup^{2,3}, R Veeramanikandan⁴, Pål Aukrust^{2,3,5}, Ooriapadickal C Abraham¹ and George M Varghese¹

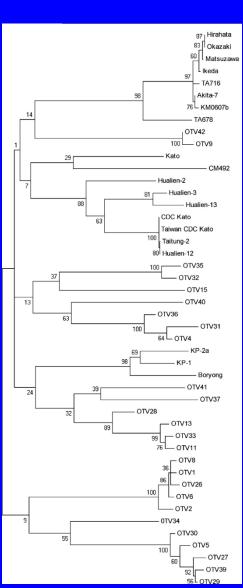
- 137 scrub typhus patients and 134 controls
- PCR restriction fragment length polymorphism
- Significant heterozygous TLR4 Asp299Gly among cases



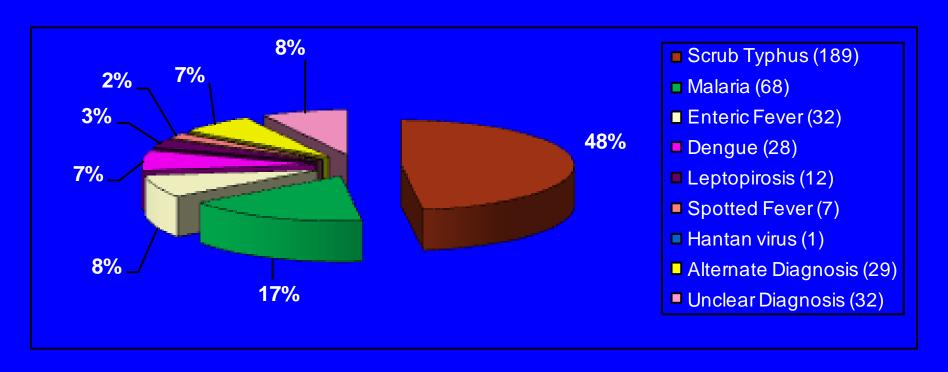
Cytokine Network in Scrub Typhus: High Levels of Interleukin-8 Are Associated with Disease Severity and Mortality

Elisabeth Astrup^{1,2}*, Jeshina Janardhanan³, Kari Otterdal^{2,4}, Thor Ueland^{2,4}, John A. J. Prakash⁵, Tove Lekva^{2,4,6}, Øystein A. Strand⁷, O. C. Abraham³, Kurien Thomas⁸, Jan Kristian Damås^{9,10}, Prasad Mathews⁸, Dilip Mathai⁸, Pål Aukrust^{2,4,11}, George M. Varghese³

- Cytokine profile and their relation to disease severity and clinical outcome
- 129 ST patients compared to 31 healthy controls and 31 infectious disease controls
- IL-8, monocyte chemoattractant peptide-1 and macrophage inflammatory protein-1b were associated with disease severity and mortality
- Platelet-derived mediators RANTES decreased


Molecular Detection & Sequencing of O. tsutsugamushi

- Kato-like 61%
- Karp like 28%
- Gilliam − 2%


56 kDa

Varghese GM etal. Emerg Infect Dis. 2015

Acute Febrile Illness – CMC Vellore

(398 patients)

Summary

- The dramatic emergence of tropical infections underscores the ease with which pathogens can move between countries and continents via today's modern transportation
- These requires more than local geographic considerations with more universal etiology of infectious agent, reservoir, and vector
- It is an intellectually challenging and rapidly changing area of Infectious Diseases

Thank You